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Abstract: One common mobile robot design consists of three ‘omniwheels’ arranged at the
vertices of an equilateral triangle, with wheel axles aligned with the rays from the center of
the triangle to each wheel. Omniwheels, like standard wheels, are driven by the motors in a
direction perpendicular to the wheel axle, but unlike standard wheels, can slip in a direction
parallel to the axle. Unlike a steered car, a vehicle with this design can move in any direction
without needing to rotate first, and can spin as it does so. We show that if there are indepen-
dent bounds on the speeds of the wheels, the fastest trajectories for this vehicle contain only
spins in place, circular arcs, and straight lines parallel to the wheel axles. We classify optimal
trajectories by the order and type of the segments; there arefour such classes, and there are no
more than 18 control switches in any optimal trajectory.

1 Introduction

This paper presents the time-optimal trajectories for a simple model of the common
mobile-robot design shown in figure 1(b). The three wheels are “omni-wheels”; the
wheels not only rotate forwards and backwards when driven bythe motors, but can
also slip sideways freely. Such a robot can drive in any direction instantaneously.

The only other ground vehicles for which the fastest trajectories are known ex-
plicitly are steered cars and differential-drives. Although our results are specific to
the particular vehicle studied, we hope that expanding the set of vehicles for which
the optimal trajectories are known will eventually lead to amore unified understand-
ing of the relationship between robot mechanism design and the use of resources.

We show that the time-optimal trajectories consist of spinsin place, circular arcs,
and straight lines parallel to the wheel axles. We label eachsegment type by a letter:
P, C , S, respectively. There are specific sequences of segments that may be opti-
mal; we call the four possible classes of trajectoriesspin, roll , shuffle, andtangent.
Figures 3(a), 4(a), 4(b), and 4(c) show an example of each type.

1. Spin trajectories consist of a spin in place through an angle no greater thanπ,
and are described by the single-letter control sequenceP.
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2. Roll trajectories consist of a sequence of up to five circular arcsof equal radius
separated by spins in place, and are described by the controlsequenceCPCPC .
The centers of the arcs all fall on a straight line. With the possible exception of
the first and last segments, the arcs all encompass the same angle, as do the spins,
and the sum of the angular displacement of a complete arc and acomplete spin
is 120◦.

3. Shuffletrajectories are composed of sequences of three circular arcs followed by
a spin,CCCP, and contain no more than seven control switches. A complete
period of ashufflemoves the vehicle ‘sideways’ in a direction parallel to a line
connecting two wheels.

4. Tangenttrajectories consist of a sequence of arcs of circles and spins in place
separated by arbitrarily long translations in a direction parallel to the line con-
taining the center of the robot and one of its wheels. All straight segments are
colinear. The control sequence isCSCSCP, and trajectories contain no more
than 18 switches. Intuitively, the robot ‘lines up’ in its fastest direction of trans-
lation, translates, and then follows arcs of circles to arrive at its final position
and orientation.

Why study optimal trajectories? Knowledge of the shortest or fastest paths be-
tween any two configurations of a particular robot is fundamental. Robots expend
resources to achieve tasks. Possibly the simplest resourceis time; the amount of time
that must be expended to move the robot between configurations is a basic property
of the mechanism, and a fundamental metric on the configuration space.

Knowledge of the time optimal trajectories is also useful. Mechanisms should
be designed so that common tasks can be achieved efficiently.If the designer must
choose between two wheels and three, what is the cost of each choice? Furthermore,
the time-optimal metric is independent of software-designdecisions, and therefore
provides a benchmark to compare planners or controllers. Finally, the metric derived
from the optimal trajectories may be used as a heuristic to guide sampling in com-
plete planning systems that permit obstacles or a more complex dynamic model of
the mechanism.

We do not argue that controllers should be designed to drive robots to follow the
‘optimal’ trajectories we derive, or that planners must usethe optimal trajectories as
building blocks. In fact, resources other than time may alsobe important, including
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Fig. 1: The Palm-Pilot Robot Kit, an example of an omni-directionalvehicle. Photograph used
by permission of Acroname, Inc.,www.acroname.com.



The minimum-time trajectories for an omni-directional vehicle 3

energy consumption, safety, simplicity of programming, sensing opportunities, and
accuracy. Tradeoffs must be made, but understanding the relative payoffs of each
design requires an understanding of the fundamental behavior of the mechanism.
The knowledge that great circles are geodesics on the spheredoes not require that
airplanes must strictly follow great circles, but may nonetheless influence the choice
of flight paths.

1.1 Related work

Most of the work on time-optimal control for vehicles has focused on bounded-
velocity models of steered cars. Dubins [6] determined the shortest paths between
two configurations of a car that can only move forwards at constant speed, with
bounded steering angle. Reeds and Shepp [9] found the shortest paths for a steered
car that can move backwards as well as forwards. Sussmann andTang [14] further
refined these results, reducing the number of families of trajectories thought to be
optimal by two, and Souères and Boissonnat [12], and Souères and Laumond [13]
discovered the mapping from pairs of configurations to optimal trajectories for the
Reeds and Shepp car. Desaulniers [5] showed that in the presence of obstacles short-
est paths may not exist between certain configurations of steered cars. Furthermore,
in addition to the straight lines and circular arcs of minimum radius discovered by
Dubins, the shortest paths may also contain segments that follow the boundaries of
obstacles. Vendittelliet al.[15] used geometric techniques to develop an algorithm to
obtain the shortest non-holonomic distance from a robot to any point on an obstacle.

Recently, the optimal trajectories have been found for vehicles that are not steered
cars, and metrics other than time. The time-optimal controls for bounded-velocity
differential-drives were discovered by Balkcom and Mason [1]. Chitsazet al. [2] de-
termined the trajectories for a differential-drive that minimize the sum of the rotation
of the two wheels. The optimal paths have also been explored for some examples
of vehicles without wheels. Coombs and Lewis [4] consider a simplified model of a
hovercraft, and Chyba and Haberkorn [3] consider underwater vehicles. We know of
no previous attempts to obtain closed-form solution for theoptimal trajectories for
any omni-directional vehicle.

Bounded-velocity models capture the kinematics of a vehicle, but not the dynam-
ics. The results of this paper strongly depend on the analytical solution of differential
equations describing the optimal trajectories. Analysis of dynamic models, for which
analytical solutions are not typically available, is a verydifficult problem. Results
include numerical techniques and geometric characterization rather than complete
closed-form solutions; see papers by Reister and Pin [10], Renaud and Fourquet [11],
and Kalmár-Nagyet al. [7].

2 Model, assumptions, notation

Let the state of the robot beq = (x, y, θ), the location of the center of the robot, and
the angle that the line from the center to the first wheel makeswith the horizontal,
as shown in figure 1(b). Without loss of generality, we assumethat the distance from
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the center of the robot to the wheels is one. We further assumethat each of the three
wheel-speed controlsv1, v2, andv3 is in the interval[−1, 1]. We define the control
region

U = [−1, 1]× [−1, 1]× [−1, 1], (1)

and consider the class ofadmissible controlsto be the measurable functionsu(t)
mapping the time interval[0, T ] to U : u(t) = (v1(t), v2(t), v3(t))

T .
To simplify notation, we defineci = cos θi, andsi = sin θi, whereθi = θ +(i−

1)120◦, the angle of theith wheel measured from the horizontal. Define the matrix
S to be the Jacobian that transforms between configuration-space velocities of the
vehicle, and velocities of the wheels in the controlled direction:

S =





−s1 c1 1
−s2 c2 1
−s3 c3 1



, S−1 = 2

3





−s1 −s2 −s3

c1 c2 c3

1/2 1/2 1/2



 . (2)

We define the state trajectoryq(t) = (x(t), y(t), θ(t)) for any initial stateq0 and
admissible controlu(t) using Lebesgue integration, with the standard measure:

q(t) = q0 +

∫

S−1u . (3)

It may be easily verified that the kinematic equations and bounds on the controls
satisfy the conditions of theorem 6 of Sussmann and Tang [14]; an optimal trajectory
exists between every pair of start and goal configurations.

3 Pontryagin’s Maximum Principle
This section uses Pontryagin’s Maximum Principle [8] to derive necessary conditions
for time-optimal trajectories. The Maximum Principle states that if the trajectoryq(t)
with corresponding controlu(t) is time-optimal then the following conditions must
hold:

1. There exists a non-trivial (not identically zero)adjoint function: an absolutely
continuousR3-valued function of time,λ(t), defined by a differential equation,
theadjoint equation, in the configuration and in time-derivatives of the configu-
ration:

λ̇ = − ∂

∂q
〈λ, q̇(q, u)〉 a.e. (4)

We call the inner product appearing in equation 4 theHamiltonian:

H(λ, q, u) = 〈λ, q̇(q, u)〉. (5)

2. The controlu(t) minimizes the Hamiltonian:

H(λ(t), q(t), u(t)) = min
z∈U

H(λ(t), q(t), z) a.e. (6)

Equation 6 is called theminimization equation.
3. The Hamiltonian is constant and non-positive over the trajectory. We defineλ0

as the negative of the value of the Hamiltonian;λ0 is constant and non-negative
for any optimal trajectory.
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3.1 Application of the Maximum Principle

We solve for the adjoint vector by direct integration:λ1 = 3k1, λ2 = 3k2, and
λ3 = 3(k1y − k2x + k3), where3k1, 3k2, and3k3 are constants of integration. (The
constant factor of 3 will simplify the form of equations 9 below.)

We now substitute the adjoint function into the minimization equation to deter-
mine necessary conditions for time-optimal trajectories.To simplify notation, we
define three functions,

ϕi(t) = 〈λ(t), fi(q(t))〉, (7)

wherefi is theith column ofS−1. Explicitly, if we define the function

η(x, y) = k1y − k2x + k3, (8)

then the functions are:

ϕi = 2(−k1si + k2ci) + η(x, y) (9)

We may now write the equation for the Hamiltonian in terms of these functions
and the controlsv1, v2, andv3:

H = ϕ1v1 + ϕ2v2 + ϕ3v3. (10)

The minimization condition of the Maximum Principle (condition 2, above) ap-
plied to equation 10 implies that if the functionϕi is negative, thenvi should be cho-
sen to take its maximum possible value, 1, in order to minimize H . If the function
ϕi is positive, thenvi should be chosen to be−1. Since the controls switch when-
ever one of the functionsϕi changes sign, we refer to the functionsϕi asswitching
functions.

Theorem 1.For any time-optimal trajectory of the omni-directional vehicle, there
exist constantsk1, k2, andk3, with k2

1 + k2
2 + k2

3 6= 0, such that at almost every time
t, the value of the controlvi is determined by the sign of the switching functionϕi:

vi =

{

1 if ϕi < 0
−1 if ϕi > 0,

(11)

where the switching functionsϕ1, ϕ2, andϕ3 are given by equations 8, 9. Further-
more, the quantityλ0 defined by

λ0 = −H(ϕ1, ϕ2, ϕ3) = |ϕ1| + |ϕ2| + |ϕ3| (12)

is constant along the trajectory.

Proof: Application of the Maximum Principle.
The Maximum Principle does not directly give information about the optimal

controls in the case that one or more of the switching functions ϕi is zero. Theo-
rems 7 and 8 in section 4 specifically address this case. The Maximum Principle also
does not give information about the constants of integration, as these depend on the
initial and final configurations of the robot. In this paper, we give the structure of
trajectories as a function of these constants, but do not describe how to determine the
constants except in a few cases.
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Fig. 2: Geometric interpretation of the switching functions. For the case shown,ϕ1 < 0,
ϕ2 > 0, andϕ3 > 0, so the controls arev1 = 1, v2 = −1, andv3 = −1.

3.2 Geometric interpretation of the switching functions

The switching functions are not independent, and have a geometric interpretation.
Consider the functionη(x, y):

η(x, y) = k1y − k2x + k3. (13)

η(x, y) gives the signed distance of the point(x, y) from a line in the plane whose
location is determined by the constantsk1, k2, andk3, scaled by the factork2

1 + k2
2 .

(If k2
1 + k2

2 = 0, we may consider the line to be ‘at infinity’; the robot spins in
place indefinitely. Since this control is identical to thespin trajectories described in
section 5, we do not consider this case separately.) We will call this line theswitching
line. We also associate a direction with the switching line such that any point(x, y)
is to the left of the switching line ifη(x, y) > 0, and to the right of the switching line
if η(x, y) < 0.

Theorem 2.Define the pointsS1, S2, andS3 rigidly attached to the vehicle, with
distance 2 from the center of the vehicle, and making angles of 180◦, 300◦, and60◦

with the ray from the center of the vehicle to wheel 1, respectively (refer to figure 2).
For any time-optimal trajectory, there exist constantsk1, k2, andk3, and a line (the
switching line)

L = {(a, b) ∈ R
2 : k1b − k2a + k3 = 0},

such that the controls of the vehiclev1, v2, and v3 depend on the location of the
pointsS1, S2, andS3 relative to the line. Specifically, fori ∈ {1, 2, 3},

vi =

{

1 if Si is to the right of the switching line,
−1 if Si is to the left of the switching line.

Proof: Let (xSi
, ySi

) be the coordinates ofSi. We compute the signed, scaled
distance of the pointSi from the lineL, and observe from the definition of the switch-
ing functions thatϕi(x, y, θ) = η(xSi

, ySi
).
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We will call S1, S2, andS3 theswitching points. For any optimal trajectory, the
location of the switching line is fixed by the choice of constants, and the controls at
any point depend on the signs, but not on the magnitudes, of the switching functions.
Figure 2 shows an example. Two of the switching points (S2 and S3) are to the
left of the switching line, so the corresponding switching functions are positive, and
wheels 2 and 3 spin at full speed in the negative direction. The remaining switching
point (S1) is to the right of the switching line, so wheel 1 spins at fullspeed in the
positive direction. As a result of these controls, the robotwill follow a clockwise
circular arc. The center of the arc is a distance of four from the robot, and along the
line containing the center of the robot and wheel 1.

In general, if all three switching functions have the same sign, the controls all
take either their maximum or minimum value, and the robot spins in place. The
center of rotation is the center of the robot; we call this point IC 0. If the switching
functions are non-zero but do not all have the same sign, the vehicle rotates in a
circular arc. The rotation center is a distance of four from the center of the robot, on
the ray connect the center of the robot and the wheel corresponding to the ‘minority’
switching function. We call these rotation centers IC 1, IC 2, and IC 3.

The switching functions are invariant to translation of thevehicle parallel to the
switching line (see figure 2), and scaling the switching functions by a positive con-
stant does not affect the controls. Therefore, for any optimal trajectory, we may with-
out loss of generality choose a coordinate frame withx-axis on the switching line,
and an appropriate scaling, such thaty gives the distance from the switching line,
andθ gives the angle of the vehicle relative to the switching line. With this choice of
coordinates, the switching functions become

ϕi = y − 2si (14)

We will use these coordinates for the remainder of the paper.

4 Properties of extremals

We will say that any trajectory that satisfies the conditionsof theorem 1 (or equiva-
lently, theorem 2) isextremal. In this section, we will enumerate several properties
of extremal trajectories. The primary result is that every extremal trajectory contains
only a finite number of control switches with an upper bound determined byλ0.

We say that an extremal trajectory isgenericon some interval if none of the
switching functionsϕi is zero at any point contained in the interval. We say that a
trajectory issingular on some interval if exactly one of the switching functions is
identically zero on that interval, and no other switching function is zero at any point
on the interval. We say that an extremal trajectory isdoubly singularon an inter-
val if exactly two of the switching functions are zero on thatinterval, and the third
switching function is never zero on the interval. We will call a trajectorysingular if
it contains any singular interval of non-zero width.

Detailed proofs of the following properties are omitted dueto space limitations,
but are available from the authors upon request. Most of the proofs are based on
differential analysis of the switching functions.
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Theorem 3.At no point along an extremal trajectory doesϕ1 = ϕ2 = ϕ3 = 0.

Theorem 4. If an extremal trajectory contains any doubly-singular point, then every
point of the trajectory is doubly-singular.

Theorem 5.Every pair of singular points of an extremal trajectory is contained in a
single singular interval, or is separated by a generic point.

Theorem 6.The number of control switches in an extremal trajectory is finite, and
upper-bounded by a constant that depends only onλ0.

In section 7, we will show that foroptimaltrajectories, a much stronger property
holds: the number of control switches is never greater than 18.

Theorem 7.Consider a singular interval of non-zero duration, withϕi = 0. At every
point of the interval,y = sin θi = 0, and the controls are constant:vi = 0, and
vj = −vk = ±1.

Theorem 8.Consider a doubly-singular interval of non-zero duration,with ϕi =
ϕj = 0. Along the interval, (i)y = ±1, cos θk = 0, and (ii) the controls are constant,
with vk = ±1, andvi = vj = ∓.5.

5 Extremal controls

Theorems 1, 6, 7, and 8 imply that optimal trajectories are composed of a finite
number of segments, along each of which the controls are constant. Considering
all possible combinations of signs and zeros of the switching functions allows the
twenty extremal controls to be enumerated; table 1 shows theresults. The vehicle
may spin in place, follow a circular arc, translate in a direction perpendicular to the
line joining two wheels, or translate in a direction parallel to the line joining two
wheels. We denote each control by a symbol:P±, Ci± , Si,j , or Dk± , respectively.
The subscripts depend on the specific signs of the switching functions.

Theorem 2 gives a more geometric interpretation of the extremal controls. The
controls depend on the location of the switching points relative to the switching line.
There are four cases:

• Spin in place. If the vehicle is far from the switching line, all of the switching
points are on the same side of the line, and all of the wheels spin in the same
direction. Figure 3(a) shows an example. If the robot is to the left of the switching
line, the robot spins clockwise (P−); if the robot is to the right of the switching
line, the robot spins counterclockwise (P+).

• Circular arc. Figure 3(b) shows an example of a counterclockwise arc around
IC2 (C2+ ). If two switching points are on one side of the line, and one switching
point is on the other, two wheels spin in one direction at fullspeed, and one wheel
spins in the opposite direction at full speed. These controls cause the vehicle to
follow a circular arc of radius four; the center of the arc is the IC corresponding
to the switching point that is not on the same side of the switching line as the
others, and the direction of rotation depends on whether this switching point is
to the left or right of the line.
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Symbol ϕ u λ0

P
−

+++ -1, -1, -1 3y

P+ --- 1, 1, 1 −3y

C1− -++ 1, -1, -1 y + 4 sin θ1

C2− +-+ -1, 1, -1 y + 4 sin θ2

C3− ++- -1, -1, 1 y + 4 sin θ3

C1+ +-- -1, 1, 1 −y − 4 sin θ1

C2+ -+- 1, -1, 1 −y − 4 sin θ2

C3+ --+ 1, 1, -1 −y − 4 sin θ3

Symbol ϕ u λ0

S1,3 -0+ 1, 0, -1 2
√

3

S1,2 -+0 1, -1, 0 2
√

3

S3,2 0+- 0, -1, 1 2
√

3

S3,1 +0- -1, 0, 1 2
√

3

S2,1 +-0 -1, 1, 0 2
√

3

S2,3 0-+ 0, 1, -1 2
√

3

D3+ 00+ .5, .5, -1 3

D1− -00 1, -.5, -.5 3

D2+ 0+0 .5, -1, .5 3

D3− 00- -.5, -.5, 1 3

D1+ +00 -1, .5, .5 3

D2− 0-0 -.5, 1, -.5 3

Table 1: The twenty extremal controls.

• Singular translation. Figure 3(c) shows an example,S1,3, where the second
switching point slides along the switching line. If two switching points are an
equal distance from the switching line but on opposite sidesof the line, two of
the wheels spin at full speed, but in opposite direction. If the last switching point
falls exactly on the switching line, theorem 2 does not provide any information
about the speed of the last wheel. If the wheel does not spin, then the vehicle
translates along the switching line, as described by theorem 7. Otherwise, the
singular translation is only instantaneous.

• Doubly-singular translation. Figure 3(b) shows an example,D3+ , where the
first and second switching points slide along the switching line. If two switching
points fall on the switching line, the speeds of the corresponding wheels cannot
be determined from theorem 2. If these wheels spin at half speed, in a direction
opposite to that of the third wheel, both switching points slide along the switching
line, and the vehicle translates. It turns out that that doubly-singular controls,
although extremal, areneveroptimal; see section 7.

6 Classification of extremal trajectories

Every extremal trajectory is generated by a sequence of constant controls from ta-
ble 1. However, not every sequence is extremal. This sectiongeometrically enumer-
ates the five structures of extremal trajectories.

First consider an example, shown in figure 4(a). Initially, switching points 1 and
3 fall to the left of the switching line, and switching point 2falls to the right of
the switching line. The vehicle rotates in the clockwise direction about IC 2. After
some amount of rotation, switching point 2 crosses the switching line. Now all three
switching points are to the left of the switching line, the velocity of wheel 2 changes
sign, and the vehicle spins in place. When switching point 3 crosses the switching
line, the vehicle begins to rotate about IC 3. When switchingpoint 3 crosses back
to the left side, the vehicle spins in place again until switching point 1 crosses the
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Fig. 3: Extremal controls for an omni-directional robot.

line. The pattern continues in this form; we describe the trajectory by the sequence
of symbolsC3+C2−C1+P+ . . . .

In general, if no switching points fall on the switching line(the generic case),
then the controls are completely determined by theorem 2, and the vehicle either
spins in place or rotates around a fixed point. When one of the switching points
crosses the switching line, the controls change. For some configurations for which
one or two of the switching points fall exactly on the switching line (the singular and
doubly-singular cases), there exist controls that allow the switching points to slide
along the switching line.

We will define these classes more rigorously in sections 6.1 and 6.2. However,
we can see geometrically that there are five cases:

• SpinCW andSpinCCW. If the vehicle is far from the switching line, the switch-
ing points are on the same side of the switching line and nevercross it; the vehicle
spins in place indefinitely. The structure off the trajectory is eitherP− (if the ve-
hicle is to the left of the switching line) orP+ (if the vehicle is to the right of the
switching line). An example is shown in figure 3(a).

• RollCW and RollCCW . If the switching points either straddle the switching
line, or the vehicle is close enough to the switching line that spinning in place
will eventually cause the switching points to straddle the line, the trajectory is a
sequence of circular arcs and spins in place. If the vehicle is far enough from the
switching line that every switching point crosses the switching line and returns to
the same side before the next switching point crosses the line, the structure of the
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−
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Fig. 4: Extremal trajectories for an omni-directional robot.

trajectory is as described in the example above and in figure 4(a).θ is monotonic
during the trajectory.

• Shuffle. If the vehicle is close enough to the switching line that twoswitching
points cross the switching line before the first returns to its initial side, the sign
of θ̇ changes during the trajectory. An example is shown in figure 4(b).

• Tangent. As the vehicle spins in place or follows a circular arc, the switching
points follow circular arcs. If one of these arcs is tangent to the switching line, a
singular control becomes possible at the point of tangency,and the vehicle may
translate along the switching line for an arbitrary duration before returning to fol-
lowing a circular arc. An example is shown in figure 4(c). A single circular arc
is divided into three segments in atangenttrajectory. These segments are sepa-
rated by the singularS curves, possibly of zero duration. We call these segments
Cstart, Cmid, andCend, as shown in figure 4(c). The robot rotates through60◦

during a completeCmid segment.
• Slide. If two switching points fall on the switching line, the trajectory is doubly

singular. The vehicle slides along the switching line in a pure translation; an
example of this trajectory type is shown by figure 3(d). Althoughslidetrajectories
are extremal, we will show in section 7 that they are never optimal.
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set (contour) of the Hamiltonian. The dashed
lines represent control switches; the bold lines
separate the trajectory classes.

Fig. 5: The configuration space of the robot relative to the switching line.

6.1 Configuration space

In order to show that the above list of trajectory classes is exhaustive, it is useful to
consider the structure of trajectories in configuration space. The configuration of the
robot relative to the switching line may be represented by(θ, y). Figure 5(a) shows
the configuration space.

Each point on figure 5(a) corresponds to a configuration of therobot relative to
the switching line. The sinusoidal curves defined byϕ1 = 0, ϕ2 = 0, andϕ3 = 0
mark boundaries in configuration space; we call these curvestheswitching curves.
The switching curves and their intersections divide the configuration space into cells,
within each of which the controls are constant.

As an example, consider a point below switching curve 1, but above switching
curves 2 and 3. The controls are(−1, 1, 1), described by the symbolC1− ; the vehicle
follows a circular arc around IC 1 in the clockwise direction. This trajectory is a
sinusoidal curve in configuration space.

6.2 Level sets of the Hamiltonian

The trajectory curves in configuration space can be drawn by considering each possi-
ble initial configuration, determining the constant control, and integrating to find the
trajectory. When the trajectory crosses a switching curve,the control switches. How-
ever, the condition that the Hamiltonian remain constant over a trajectory provides
an even simpler way to enumerate all trajectories in the configuration space.

Each extremal trajectory falls on a level set of the Hamiltonian (equation 12), and
extremal trajectories may be classified by the valueλ0. Figure 5(b) shows the level
sets of the Hamiltonian, or equivalently, extremal trajectories in configuration space.
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• If λ0 > 6, the level set is a pair of horizontal lines, one withy = λ0/3, corre-
sponding to aspinCWtrajectory, and one withy = −λ0/3, corresponding to a
spinCCWtrajectory.

• If 2
√

3 ≤ λ0 ≤ 6, the level set is composed of two disjoint curves, one corre-
sponding torollCW trajectory and one corresponding to arollCCW trajectory.

• If λ0 = 2
√

3, the level set is the union of the bold curves shown in figure 5(b).
Tangent trajectories follow these curves.

• If 3 < λ0 < 2
√

3, the level set is composed of six disjoint curves, one corre-
sponding to each of the six symmetricshuffletrajectories.

• If λ0 = 3, the level set is six isolated points, each corresponding toone of the six
slidetrajectories.

Class Control sequence Value ofλ0

SpinCW P
−

λ0 ≥ 6

SpinCCW P+

RollCW C3−P
−

C2−P
−

C1−P
−

. . . 2
√

3 ≤ λ0 < 6

RollCCW C1+P+C2+P+C3+P+ . . .
Tangent CSCSCP . . . λ0 = 2

√
3

Shuffle1− C2+C1−C3+P+ 3 < λ0 < 2
√

3

Shuffle2− C3+C2−C1+P+ . . .
Shuffle3− C1+C3−C2+P+ . . .
Shuffle1+ C3−C1+C2−P

−
. . .

Shuffle2+ C1−C2+C3−P
−

. . .
Shuffle3+ C2−C3+C1−P

−
. . .

Table 2: Four of the five classes of extremal trajectories. Every optimal trajectory is composed
of a sequence of controls that is a subsequence of one of the above types. (Doubly-singular
slide trajectories are extremal, but never optimal; see section 7.) The structure oftangent
trajectories is complicated, and shown explicitly in figure6.

C3+ S2,3 C3+ S1,3 C3+ P+ C2+ S1,2 C2+ S3,2 C2+ P+ C1+ S3,1 C1+ S2,1 C1+ P+

C1− S1,2 C1− S1,3 C1− P
−

C2− S2,3 C2− S2,1 C2− P
−

C3− S3,1 C3− S3,2 C3− P
−

Fig. 6: The structure oftangenttrajectories. The controls must occur in left-to-right order in
the direction shown by either the top or the bottom arrows. However, after a singular control
S, the trajectory may switch from one sequence to the other, asshown by the vertical and
diagonal lines segments.
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7 Optimal trajectories

We have presented the five classes of extremal trajectory; every optimal trajectory
must be extremal. However, not all extremal trajectories are optimal. In this section,
we will present further conditions that optimal trajectories must satisfy. Specifically,
we will show that doubly-singular slide trajectories are never optimal, and that the
number of control switches in any optimal trajectory never exceeds 18. Finally, we
show that the classification{spin, roll , shuffle, tangent} is minimal; for each trajec-
tory class, there exists at least one pair of configurations for which a trajectory of
that class is optimal.

Theorem 9.Doubly-singular slide trajectories are not optimal for anypair of start
and goal configurations.

Proof: (sketch) First show that there exists ashufflethat connects any two con-
figurations on a slide that are separated by less than8

√
6/3. Express the distance

traveled and the time taken by ashuffletrajectory as a function ofλ0. Finally, show
that the average forward velocity for such a trajectory is strictly less than -1 (the
velocity for the doubly singular trajectory).

Theorem 10.Optimal trajectories contain no more than 18 control switches. Specif-
ically,

(i) optimal spin trajectories contain zero control switches, and the maximum dura-
tion of an optimal spin trajectory isπ;

(ii) optimal roll trajectories contain at most 8 control switches;
(iii) optimal shuffle trajectories contain at most 7 controlswitches;
(iv) optimal tangent trajectories contain at most 12 control switches if the trajec-

tory is non-monotonic inθ, and at most 18 control switches if the trajectory is
monotonic inθ;

Proof: (Sketch) The proof forspintrajectories is obvious. For each ofroll , shuf-
fle, andtangenttrajectories we slice, reorder, or reflect segments to construct alterna-
tive trajectories that take the same time, but are not extremal. Since these equal-cost
trajectories are not extremal, neither these nor the original roll , shuffle, andtangent
are optimal.

Theorem 11.There exist bounds on the displacements along thex andθ axis beyond
which spin, roll, and shuffle trajectories are not optimal. In particular,

(i) Roll trajectories withx-displacement more than−40
√

2√
3

are not optimal.

(ii) Shuffle trajectories withx-displacement more than−16
√

2√
3

andθ displacement
more than60◦ are not optimal.

(iii) Tangent trajectories are not optimal for configurations that are separated by
more than120◦, with distance between the configurations less than4.

Proof: (Sketch) Theorem 10 gives the maximum number of segments that com-
prise optimal trajectories of each class. We compute the distance of each segment for
each class.
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Theorem 12.Spin, Roll, Shuffle, and Tangent trajectories are each optimal for at
least one pair of start and goal configurations of the omni-directional vehicle.

Proof: (Sketch) For each class, we explicitly construct a pair of start and goal
configurations for which no other trajectory class is optimal. For example, if the goal
is sufficiently far away, noroll , spin, or shuffletrajectory can be optimal, since there
are no more than nine segments, and each segment is of boundedlength. Therefore
a tangenttrajectory is optimal.

8 Open problems

We have presented a complete and minimal classification of optimal trajectories, and
explicit descriptions of each trajectory. However, we havenot addressed the problem
of determining which of these trajectories is optimal for a particular pair of start and
finish configurations. For the problem of determining the shortest trajectories for a
steered car, Reeds and Shepp [9] suggest the simple approachof enumerating all
possible structures that connect two configurations, and comparing the time of each.
A similar approach should be possible for the omnidirectional vehicle.

Souères and Laumond [13] determined the completesynthesisof optimal trajec-
tories for the steered car: an explicit mapping from pairs ofconfigurations to trajecto-
ries. Balkcom and Mason [1] determined the synthesis for differential-drive vehicles.
Such a result for the omnidirectional vehicle would remove the need for enumerating
and comparing all trajectories between a pair of configurations, and would give the
metric on the configuration space more explicitly.

The current work also does not consider the presence of obstacles. We expect
that optimal trajectories among obstacles would consist ofsegments of obstacle-free
trajectories, and segments that follow the boundary of the obstacles.

There are also broader questions. The shortest or fastest trajectories are now
known for a few examples of specific systems: steered cars, the differential drive,
and the omni-directional vehicle considered here. The results share some features in
common; each of the optimal trajectories can be described bymotion of the robot rel-
ative to a switching line in the plane. The trajectories for steered cars include arcs of
circles and straight lines; the trajectories for differential drives include spins in place
and straight lines. The trajectories for the current systeminclude straight lines, arcs
of circles, and spins in place, and the system could in that sense be considered a hy-
brid of a steered car and a differential drive. What generalizations are possible, and
can the optimal trajectories be determined for a generic mechanism whose design
is described in terms of a set of variable parameters? Which mechanism should be
chosen to be most efficient for a given distribution of start and goal configurations?
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