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Abstract: One common mobile robot design consists of three ‘omnivé\egtanged at the
vertices of an equilateral triangle, with wheel axles adignwith the rays from the center of
the triangle to each wheel. Omniwheels, like standard veheeé driven by the motors in a
direction perpendicular to the wheel axle, but unlike staddvheels, can slip in a direction
parallel to the axle. Unlike a steered car, a vehicle with ti@sign can move in any direction
without needing to rotate first, and can spin as it does so.\W shat if there are indepen-
dent bounds on the speeds of the wheels, the fastest trégsctor this vehicle contain only
spins in place, circular arcs, and straight lines parati¢he wheel axles. We classify optimal
trajectories by the order and type of the segments; therf@aresuch classes, and there are no
more than 18 control switches in any optimal trajectory.

1 Introduction

This paper presents the time-optimal trajectories for gomodel of the common
mobile-robot design shown in figure 1(b). The three wheeds'‘amni-wheels”; the
wheels not only rotate forwards and backwards when drivethéynotors, but can
also slip sideways freely. Such a robot can drive in any timadnstantaneously.

The only other ground vehicles for which the fastest trajges are known ex-
plicitly are steered cars and differential-drives. Altigbuour results are specific to
the particular vehicle studied, we hope that expanding ¢h@fsvehicles for which
the optimal trajectories are known will eventually lead tmare unified understand-
ing of the relationship between robot mechanism design la@ddse of resources.

We show that the time-optimal trajectories consist of spirdace, circular arcs,
and straight lines parallel to the wheel axles. We label sagment type by a letter:
P, C, S, respectively. There are specific sequences of segmerttm#abe opti-
mal; we call the four possible classes of trajectospm roll, shuffle andtangent
Figures 3(a), 4(a), 4(b), and 4(c) show an example of eadh typ

1. Spintrajectories consist of a spin in place through an angle eatgr thanr,
and are described by the single-letter control sequénce
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2. Roll trajectories consist of a sequence of up to five circular afegjual radius
separated by spins in place, and are described by the ceatitoenc€ PCPC.
The centers of the arcs all fall on a straight line. With thegible exception of
the first and last segments, the arcs all encompass the sgieeasdo the spins,
and the sum of the angular displacement of a complete arc aathplete spin
is 120°.

3. Shuffldrajectories are composed of sequences of three circusfaliowed by

a spin,CCCP, and contain no more than seven control switches. A complete

period of ashufflemoves the vehicle ‘sideways’ in a direction parallel to alin
connecting two wheels.

4. Tangenttrajectories consist of a sequence of arcs of circles amkspiplace
separated by arbitrarily long translations in a directiangtiel to the line con-
taining the center of the robot and one of its wheels. Alligtrtasegments are
colinear. The control sequence(sSCSCP, and trajectories contain no more
than 18 switches. Intuitively, the robot ‘lines up’ in itssfast direction of trans-
lation, translates, and then follows arcs of circles tovarat its final position
and orientation.

Why study optimal trajectories? Knowledge of the shortedtstest paths be-
tween any two configurations of a particular robot is fundatak Robots expend
resources to achieve tasks. Possibly the simplest resmuioee; the amount of time
that must be expended to move the robot between configusaiabasic property
of the mechanism, and a fundamental metric on the configurapace.

Knowledge of the time optimal trajectories is also usefuedianisms should
be designed so that common tasks can be achieved efficidrtig. designer must
choose between two wheels and three, what is the cost of baate® Furthermore,
the time-optimal metric is independent of software-desiganisions, and therefore
provides a benchmark to compare planners or controllemglliyj the metric derived
from the optimal trajectories may be used as a heuristic idegsampling in com-
plete planning systems that permit obstacles or a more @agynamic model of
the mechanism.

We do not argue that controllers should be designed to dolbvets to follow the
‘optimal’ trajectories we derive, or that planners must theeoptimal trajectories as
building blocks. In fact, resources other than time may als@mportant, including

(a) Photograph. (b) Notation.

Fig. 1: The Palm-Pilot Robot Kit, an example of an omni-directiovghicle. Photograph used
by permission of Acroname, InaMw. acr onamnme. com
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energy consumption, safety, simplicity of programmingisiieg opportunities, and

accuracy. Tradeoffs must be made, but understanding thévieepayoffs of each

design requires an understanding of the fundamental beha¥ithe mechanism.

The knowledge that great circles are geodesics on the splesenot require that
airplanes must strictly follow great circles, but may ndmad¢ss influence the choice
of flight paths.

1.1 Related work

Most of the work on time-optimal control for vehicles has dsed on bounded-
velocity models of steered cars. Dubins [6] determined tH@test paths between
two configurations of a car that can only move forwards at @orsspeed, with
bounded steering angle. Reeds and Shepp [9] found the shpaths for a steered
car that can move backwards as well as forwards. Sussmanfaagd14] further
refined these results, reducing the number of families ¢édtaries thought to be
optimal by two, and Souéres and Boissonnat [12], and ®su@nd Laumond [13]
discovered the mapping from pairs of configurations to oatitrajectories for the
Reeds and Shepp car. Desaulniers [5] showed that in thenmeeséobstacles short-
est paths may not exist between certain configurations efesiecars. Furthermore,
in addition to the straight lines and circular arcs of minimeadius discovered by
Dubins, the shortest paths may also contain segments i@t fihe boundaries of
obstacles. Vendittelkt al.[15] used geometric techniques to develop an algorithm to
obtain the shortest non-holonomic distance from a robohygpmint on an obstacle.

Recently, the optimal trajectories have been found foralehithat are not steered
cars, and metrics other than time. The time-optimal costfot bounded-velocity
differential-drives were discovered by Balkcom and MasfnChitsazet al.[2] de-
termined the trajectories for a differential-drive thahimiize the sum of the rotation
of the two wheels. The optimal paths have also been explaneddme examples
of vehicles without wheels. Coombs and Lewis [4] consideéngéfied model of a
hovercraft, and Chyba and Haberkorn [3] consider undenvatgcles. We know of
no previous attempts to obtain closed-form solution fordp&mal trajectories for
any omni-directional vehicle.

Bounded-velocity models capture the kinematics of a vehimlt not the dynam-
ics. The results of this paper strongly depend on the acahgolution of differential
equations describing the optimal trajectories. Analysymamic models, for which
analytical solutions are not typically available, is a vdifficult problem. Results
include numerical techniques and geometric charact@izaather than complete
closed-form solutions; see papers by Reister and Pin [H}jaRd and Fourquet [11],
and Kalmar-Nagt al.[7].

2 Model, assumptions, notation

Let the state of the robot he= (z, y, 9), the location of the center of the robot, and
the angle that the line from the center to the first wheel mak#sthe horizontal,
as shown in figure 1(b). Without loss of generality, we asstimgthe distance from
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the center of the robot to the wheels is one. We further asshat@ach of the three
wheel-speed controls;, v2, andws is in the intervall—1, 1]. We define the control
region

U=[-1,1] x [-1,1] x [-1,1], (1)
and consider the class afimissible controldo be the measurable function$t)
mapping the time interval, ] to U: u(t) = (v1(t), va(t), v3(t))T.

To simplify notation, we define; = cos 6;, ands; = sin §;, wheref; = 6 4 (i —
1)120°, the angle of theéth wheel measured from the horizontal. Define the matrix
S to be the Jacobian that transforms between configuratianespelocities of the
vehicle, and velocities of the wheels in the controlled clien:

—s1c1 1 —S81 —82 —S3
S=1—-52¢c1 , Sl = % c1 C2 C3 . (2)
—s3¢31 1/2 1/2 1/2

We define the state trajectogyt) = (x(t), y(¢), 8(¢)) for any initial statey, and
admissible control.(¢) using Lebesgue integration, with the standard measure:

Q(t)ZQO+/S_1U- ©)

It may be easily verified that the kinematic equations andhdswn the controls
satisfy the conditions of theorem 6 of Sussmann and Tang §b4dptimal trajectory
exists between every pair of start and goal configurations.

3 Pontryagin’s Maximum Principle

This section uses Pontryagin's Maximum Principle [8] todenecessary conditions
for time-optimal trajectories. The Maximum Principle stithat if the trajectory(t)
with corresponding contral(t) is time-optimal then the following conditions must
hold:

1. There exists a non-trivial (not identically zemjoint function an absolutely
continuousR3-valued function of time)(¢), defined by a differential equation,
theadjoint equationin the configuration and in time-derivatives of the configu-
ration:

. ) )
A= _a_q<)\7q(Q7u)> a.e. (4)
We call the inner product appearing in equation 4Haeniltonian
H(A q,u) = (A 4(g, w))- ()
2. The controk(t) minimizes the Hamiltonian:
HA(®), q(t), u(t) = min HA(), q(1).2)  ae. (6)

Equation 6 is called thminimization equation

3. The Hamiltonian is constant and non-positive over thigdtary. We define\g
as the negative of the value of the Hamiltoniap;is constant and non-negative
for any optimal trajectory.
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3.1 Application of the Maximum Principle

We solve for the adjoint vector by direct integration; = 3k;, A» = 3k», and
A3 = 3(k1y — ko + k3), where3ky, 3k2, and3ks are constants of integration. (The
constant factor of 3 will simplify the form of equations 9 bel)

We now substitute the adjoint function into the minimizatiequation to deter-
mine necessary conditions for time-optimal trajectorigs.simplify notation, we
define three functions,

@i(t) = (A1), fiq(t))), (1)
wheref; is theith column ofS—!. Explicitly, if we define the function
n(w,y) = k1y — kax + ks, (8)
then the functions are:
pi = 2(—k1s; + kac;) +n(z,y) )

We may now write the equation for the Hamiltonian in termshefse functions
and the controlsy, vs, andvs:

H = $1U1 + Y2v2 + Y3v3. (10)

The minimization condition of the Maximum Principle (cotidn 2, above) ap-
plied to equation 10 implies that if the functign is negative, them; should be cho-
sen to take its maximum possible value, 1, in order to mingniiz If the function
w; is positive, thery; should be chosen to bel. Since the controls switch when-
ever one of the functiong; changes sign, we refer to the functiopsasswitching
functions

Theorem 1.For any time-optimal trajectory of the omni-directionalhiele, there
exist constants, k2, andks, with k% + k2 + k3 # 0, such that at almost every time
t, the value of the contral; is determined by the sign of the switching functign

. 1 Ifg01<0
V= {—1 if i >0, (1)

where the switching functions,, @2, andys are given by equations 8, 9. Further-
more, the quantity, defined by

Ao = —H(p1, 02, 93) = |p1| + |p2] + [i3] (12)
is constant along the trajectory.

Proof: Application of the Maximum Principle. [ ]

The Maximum Principle does not directly give informationoabthe optimal
controls in the case that one or more of the switching fumetio; is zero. Theo-
rems 7 and 8 in section 4 specifically address this case. Théan Principle also
does not give information about the constants of integnatis these depend on the
initial and final configurations of the robot. In this papeg wive the structure of
trajectories as a function of these constants, but do natitbeshow to determine the
constants except in a few cases.



6 Devin J. Balkcom, Paritosh A. Kavathekar, and Matthew Tsbfa

IC1

QS

Fig. 2: Geometric interpretation of the switching functions. Hoe ttase shownp; < 0,
p2 > 0, andys > 0, so the controls are; = 1, v2 = —1, andvz = —1.

3.2 Geometric interpretation of the switching functions

The switching functions are not independent, and have a gea@ninterpretation.
Consider the function(z, y):

n(x,y) = kiy — kax + k3. (13)

n(z,y) gives the signed distance of the pojnt y) from a line in the plane whose
location is determined by the constahts k2, andks, scaled by the factoe? + k2.
(If k2 + k3 = 0, we may consider the line to be ‘at infinity’; the robot spims i
place indefinitely. Since this control is identical to tintrajectories described in
section 5, we do not consider this case separately.) We alilfits line theswitching
line. We also associate a direction with the switching line shett &ny poin{z, y)

is to the left of the switching line if(x, y) > 0, and to the right of the switching line
if n(x,y) < 0.

Theorem 2.Define the pointsS, So, and S5 rigidly attached to the vehicle, with
distance 2 from the center of the vehicle, and making andl@8as, 300°, and60°
with the ray from the center of the vehicle to wheel 1, respelst (refer to figure 2).
For any time-optimal trajectory, there exist constahts ks, andks, and a line (the
switching line)

L ={(a,b) € R*: kb — koa + k3 = 0},

such that the controls of the vehicle, v2, and v3 depend on the location of the
pointsSy, Sa, andS; relative to the line. Specifically, fare {1, 2, 3},

~_J 1 if S;isto the right of the switching line
ViT ) Z1if S; is to the left of the switching line.

Proof: Let (zs,,ys,) be the coordinates ;. We compute the signed, scaled
distance of the point; from the line£, and observe from the definition of the switch-
ing functions thatp, (z, y, 0) = n(zs,, ys,)- [ |
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We will call S, S2, andSs the switching pointsFor any optimal trajectory, the
location of the switching line is fixed by the choice of cométa and the controls at
any point depend on the signs, but not on the magnitudeseaititching functions.
Figure 2 shows an example. Two of the switching poirfts &nd S3) are to the
left of the switching line, so the corresponding switchingdtions are positive, and
wheels 2 and 3 spin at full speed in the negative directioe.fEmaining switching
point (Sy) is to the right of the switching line, so wheel 1 spins at &gked in the
positive direction. As a result of these controls, the robit follow a clockwise
circular arc. The center of the arc is a distance of four froerbbot, and along the
line containing the center of the robot and wheel 1.

In general, if all three switching functions have the sangmsthe controls all
take either their maximum or minimum value, and the robohspn place. The
center of rotation is the center of the robot; we call thisypdC 0. If the switching
functions are non-zero but do not all have the same sign, ¢héhe rotates in a
circular arc. The rotation center is a distance of four frbed¢enter of the robot, on
the ray connect the center of the robot and the wheel cormelipg to the ‘minority’
switching function. We call these rotation centers IC 1, |@i2d IC 3.

The switching functions are invariant to translation of tiedicle parallel to the
switching line (see figure 2), and scaling the switching fioms by a positive con-
stant does not affect the controls. Therefore, for any cgittrajectory, we may with-
out loss of generality choose a coordinate frame wittixis on the switching line,
and an appropriate scaling, such thagives the distance from the switching line,
andé gives the angle of the vehicle relative to the switching.IMé&th this choice of
coordinates, the switching functions become

i =Yy —2s; (14)

We will use these coordinates for the remainder of the paper.

4 Properties of extremals

We will say that any trajectory that satisfies the conditiohtheorem 1 (or equiva-
lently, theorem 2) iextremal In this section, we will enumerate several properties
of extremal trajectories. The primary result is that evedyemal trajectory contains
only a finite number of control switches with an upper bounigdeined by\,.

We say that an extremal trajectory genericon some interval if none of the
switching functionsp; is zero at any point contained in the interval. We say that a
trajectory issingularon some interval if exactly one of the switching functions is
identically zero on that interval, and no other switchingdtion is zero at any point
on the interval. We say that an extremal trajectorgdsibly singularon an inter-
val if exactly two of the switching functions are zero on tirgerval, and the third
switching function is never zero on the interval. We willlaalrajectorysingularif
it contains any singular interval of non-zero width.

Detailed proofs of the following properties are omitted dospace limitations,
but are available from the authors upon request. Most of thefp are based on
differential analysis of the switching functions.
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Theorem 3. At no point along an extremal trajectory dogs = @2 = 3 = 0.

Theorem 4.If an extremal trajectory contains any doubly-singularmpipthen every
point of the trajectory is doubly-singular.

Theorem 5. Every pair of singular points of an extremal trajectory isxained in a
single singular interval, or is separated by a generic point

Theorem 6. The number of control switches in an extremal trajectoryrigdi and
upper-bounded by a constant that depends onlggn

In section 7, we will show that fasptimaltrajectories, a much stronger property
holds: the number of control switches is never greater ti&an 1

Theorem 7.Consider a singular interval of non-zero duration, with= 0. At every
point of the intervaly = sinf; = 0, and the controls are constant; = 0, and
v; = —v, = £1.

Theorem 8.Consider a doubly-singular interval of non-zero duratiavith ¢; =
v; = 0. Along the interval, (iy = £1, cos §;, = 0, and (ii) the controls are constant,
with vy, = £1, andv; = v; = F.5.

5 Extremal controls

Theorems 1, 6, 7, and 8 imply that optimal trajectories anmmmsed of a finite
number of segments, along each of which the controls aretaan<Considering
all possible combinations of signs and zeros of the switliimctions allows the
twenty extremal controls to be enumerated; table 1 showsethdts. The vehicle
may spin in place, follow a circular arc, translate in a di@t perpendicular to the
line joining two wheels, or translate in a direction parattethe line joining two
wheels. We denote each control by a symtdl:, C;=, S; ;, or Dy+, respectively.
The subscripts depend on the specific signs of the switchingtions.

Theorem 2 gives a more geometric interpretation of the edteontrols. The
controls depend on the location of the switching pointstieddo the switching line.
There are four cases:

e Spin in place.If the vehicle is far from the switching line, all of the swliiag
points are on the same side of the line, and all of the whedtsispgthe same
direction. Figure 3(a) shows an example. If the robot is &déffit of the switching
line, the robot spins clockwis@( ); if the robot is to the right of the switching
line, the robot spins counterclockwige ().

e Circular arc. Figure 3(b) shows an example of a counterclockwise arc aoun
IC2 (Cy+). If two switching points are on one side of the line, and oniching
pointis on the other, two wheels spin in one direction at§pked, and one wheel
spins in the opposite direction at full speed. These cosiralise the vehicle to
follow a circular arc of radius four; the center of the archie tC corresponding
to the switching point that is not on the same side of the $witgline as the
others, and the direction of rotation depends on whetherahitching point is
to the left or right of the line.
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Symbo| ¢ | u | Ao Symbol ¢ | u | Ao
P_ [+++]-1, -1, -] 3y Si3 [-0+[ 1,0,-112v3
Py |---|1,1,1 —3y S12 |-+0| 1,-1,0(2v/3
Cy— [|-++[1,-1,-1] y +4sin6; Ss2 [0+-|0,-1,1 23
Cy- |*+-+[-1,1,-1] y + 4sin6; S3a [+0-|-1,0,1(2v3
Cye |++-|-1,-1,1| y + 4sinbs Seq [+-0[-1,1,0(2V3
Cpt |+--|-1,1,1|—y —4sin6; Sas [0-+[0,1,-1[2V3
Cotr |-+ |1,-1,1|—y —4sinb Ds+ |00+|.5,.5,-1 3
Ca+ |--+|1,1,-1|—y —4sin0; D,- |-00|1,-5,-5 3

D,: |0+0|5,-1,.5 3
D,- |00-|-5,-5,1 3
D, [+00|-1, 5, .5 3
D, |0-0|-5,1,-§ 3

Table 1: The twenty extremal controls.

e Singular translation. Figure 3(c) shows an examplg,; 3, where the second
switching point slides along the switching line. If two sglitng points are an
equal distance from the switching line but on opposite safdabe line, two of
the wheels spin at full speed, but in opposite directiorhéflast switching point
falls exactly on the switching line, theorem 2 does not paevany information
about the speed of the last wheel. If the wheel does not dpém, the vehicle
translates along the switching line, as described by tmeafeOtherwise, the
singular translation is only instantaneous.

e Doubly-singular translation. Figure 3(b) shows an examplBg+, where the
first and second switching points slide along the switching. lIf two switching
points fall on the switching line, the speeds of the corresing wheels cannot
be determined from theorem 2. If these wheels spin at ha#&pa a direction
opposite to that of the third wheel, both switching poinigdeshlong the switching
line, and the vehicle translates. It turns out that that diealmgular controls,
although extremal, aneeveroptimal; see section 7.

6 Classification of extremal trajectories

Every extremal trajectory is generated by a sequence oftaansontrols from ta-
ble 1. However, not every sequence is extremal. This seggometrically enumer-
ates the five structures of extremal trajectories.

First consider an example, shown in figure 4(a). Initialyitshing points 1 and
3 fall to the left of the switching line, and switching pointf&lls to the right of
the switching line. The vehicle rotates in the clockwisesdion about IC 2. After
some amount of rotation, switching point 2 crosses the #witcline. Now all three
switching points are to the left of the switching line, théoaity of wheel 2 changes
sign, and the vehicle spins in place. When switching pointadses the switching
line, the vehicle begins to rotate about IC 3. When switchpogt 3 crosses back
to the left side, the vehicle spins in place again until shiitg point 1 crosses the



10 Devin J. Balkcom, Paritosh A. Kavathekar, and Matthew @sbh
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(&) An example clockwisespin (b) An example clockwiseircu-
control,P_. lar arc control,C,—.

s

o 03 o 4;’23

% <—\’ 5 r

Sl 51 Sz »C
(c) An examplesingular transla- (d) An exampledoubly-singular
tion control,S; 3. translationcontrol, D .

Fig. 3: Extremal controls for an omni-directional robot.

line. The pattern continues in this form; we describe thizttary by the sequence
of symbolsC3+Cy-C1+ P4 .. ..

In general, if no switching points fall on the switching lifiae generic case),
then the controls are completely determined by theorem @, tla@ vehicle either
spins in place or rotates around a fixed point. When one of witeling points
crosses the switching line, the controls change. For somégemations for which
one or two of the switching points fall exactly on the switafpline (the singular and
doubly-singular cases), there exist controls that allogvdtvitching points to slide
along the switching line.

We will define these classes more rigorously in sections 6dl62. However,
we can see geometrically that there are five cases:

e SpinCW andSpinCCW. If the vehicle is far from the switching line, the switch-
ing points are on the same side of the switching line and raess it; the vehicle
spins in place indefinitely. The structure off the trajegtisreitherP _ (if the ve-
hicle is to the left of the switching line) dr_. (if the vehicle is to the right of the
switching line). An example is shown in figure 3(a).

e RolICW andRollICCW. If the switching points either straddle the switching
line, or the vehicle is close enough to the switching ling 8pnning in place
will eventually cause the switching points to straddle ihe,lthe trajectory is a
sequence of circular arcs and spins in place. If the vehédierienough from the
switching line that every switching point crosses the shiiig line and returns to
the same side before the next switching point crosses tagthe structure of the
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IC3 IC2
. .

S & i

e IC3
(@) An example trajectory of typeRollICW, (b) An example trajec-
Cyo-P_C3-P_C,-. tory of type Shuffle

Q4+ C,-P_Cy-Cys C,-P_ ...

(c) An example trajectory of typeTangent,
C517* S0 3CR14S2 1 C5RIP_ C"".

s
Fig. 4: Extremal trajectories for an omni-directional robot.

trajectory is as described in the example above and in figiae®is monotonic
during the trajectory.

Shuffle. If the vehicle is close enough to the switching line that swatching
points cross the switching line before the first returnsdarittial side, the sign
of § changes during the trajectory. An example is shown in fig(iod. 4

Tangent. As the vehicle spins in place or follows a circular arc, thdtching
points follow circular arcs. If one of these arcs is tangerthe switching line, a
singular control becomes possible at the point of tangearay,the vehicle may
translate along the switching line for an arbitrary dunatiefore returning to fol-
lowing a circular arc. An example is shown in figure 4(c). Agecircular arc

is divided into three segments int@ngenttrajectory. These segments are sepa-
rated by the singulds curves, possibly of zero duration. We call these segments
Cstart omid "andCend, as shown in figure 4(c). The robot rotates thro6gh
during a complet€™d segment.

Slide. If two switching points fall on the switching line, the teajtory is doubly
singular. The vehicle slides along the switching line in aeptranslation; an
example of this trajectory type is shown by figure 3(d). Aligbslidetrajectories
are extremal, we will show in section 7 that they are neveinugdt



12 Devin J. Balkcom, Paritosh A. Kavathekar, and Matthew @sbh

Shuffle; ;- Shuffles Shuffles
SpinCW

~ RolleCw |
| spincow
Shuffles Shuffle; Shuffle;

(a) The sinusoidal switching curves partitio(b) Each trajectory corresponds to a level

the configuration space into eigfit andP set (contour) of the Hamiltonian. The dashed

control regions. lines represent control switches; the bold lines
separate the trajectory classes.

Fig. 5: The configuration space of the robot relative to the switglHiime.

6.1 Configuration space

In order to show that the above list of trajectory classexlastive, it is useful to
consider the structure of trajectories in configuratiorcepahe configuration of the
robot relative to the switching line may be representeddyy). Figure 5(a) shows
the configuration space.

Each point on figure 5(a) corresponds to a configuration ofdbet relative to
the switching line. The sinusoidal curves defineddy= 0, 92 = 0, andyps = 0
mark boundaries in configuration space; we call these cuhesswitching curves
The switching curves and their intersections divide thdigomation space into cells,
within each of which the controls are constant.

As an example, consider a point below switching curve 1, bova switching
curves 2 and 3. The controls grel, 1, 1), described by the symb@}, - ; the vehicle
follows a circular arc around IC 1 in the clockwise directidrhis trajectory is a
sinusoidal curve in configuration space.

6.2 Level sets of the Hamiltonian

The trajectory curves in configuration space can be drawmhgidering each possi-
ble initial configuration, determining the constant cohtamd integrating to find the
trajectory. When the trajectory crosses a switching cuheecontrol switches. How-
ever, the condition that the Hamiltonian remain constaetr @/trajectory provides
an even simpler way to enumerate all trajectories in the gardtion space.

Each extremal trajectory falls on a level set of the Hamiliar{equation 12), and
extremal trajectories may be classified by the valgeFigure 5(b) shows the level
sets of the Hamiltonian, or equivalently, extremal trajeiets in configuration space.
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If Ay > 6, the level set is a pair of horizontal lines, one with= \,/3, corre-
sponding to aspinCWtrajectory, and one witly = — /3, corresponding to a
spinCCWtrajectory.

If 2v/3 < Ao < 6, the level set is composed of two disjoint curves, one corre-
sponding taollCW trajectory and one corresponding toodCCW trajectory.

If \o = 2/3, the level set is the union of the bold curves shown in figul®.5(
Tangent trajectories follow these curves.

If 3 < \o < 2v/3, the level set is composed of six disjoint curves, one corre-
sponding to each of the six symmetsicuffletrajectories.

If Ao = 3, the level set is six isolated points, each correspondiog&oof the six
slidetrajectories.

Class | Control sequence | Value of)o
SpinCW P_ Ao > 6
SpinCCW Py

RollCW [Cy3-P_Co—P_C,-P_...[2/3< X0 <6
RollCCW Cl+ P+CQ+ P+CS+ PJr e

Tangent CSCSCP ... o =2V3
Shuffle; CQ+ leCS+P+ 3< o< 2\/§
Shuﬂie2, 03+ C27 Cl+ P+ -

Shufﬁeg, Cl+ 037 CQ+ PJr e

Shufﬁepr 037 Cl+027P7
Shufflea; | C;-CyrCy-P_ ...
Shufﬁeg+ 027 C3+ le P_ ...

Table 2: Four of the five classes of extremal trajectories. Everynoptirajectory is composed
of a sequence of controls that is a subsequence of one of tve &pes. (Doubly-singular
slide trajectories are extremal, but never optimal; see sectipA e structure otangent
trajectories is complicated, and shown explicitly in figre

Cs+ Sa3 Cg+ Sp,3 Cg+ Py Cor S12 Cot S32 Cor Py Crv Sz G+ So1 Civ Py

<

Ci- Si,2 G- S1,3 G- P_ Cy- Sp3 Cy- So1 Co- P Cs- Sz C3- S30 C3- P

Fig. 6: The structure ofangenttrajectories. The controls must occur in left-to-right eréh
the direction shown by either the top or the bottom arrowsvéler, after a singular control
S, the trajectory may switch from one sequence to the otheshawn by the vertical and
diagonal lines segments.
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7 Optimal trajectories

We have presented the five classes of extremal trajectoeyy eptimal trajectory
must be extremal. However, not all extremal trajectoriesogatimal. In this section,
we will present further conditions that optimal trajecésrimust satisfy. Specifically,
we will show that doubly-singular slide trajectories areereoptimal, and that the
number of control switches in any optimal trajectory nevwerezds 18. Finally, we
show that the classificatiofspin roll, shuffle tangen} is minimal for each trajec-
tory class, there exists at least one pair of configurationsvhich a trajectory of
that class is optimal.

Theorem 9. Doubly-singular slide trajectories are not optimal for apgir of start
and goal configurations.

Proof: (sketch) First show that there existstaufflethat connects any two con-
figurations on a slide that are separated by less 846/3. Express the distance
traveled and the time taken byshuffletrajectory as a function of,. Finally, show
that the average forward velocity for such a trajectory ity less than -1 (the
velocity for the doubly singular trajectory). ]

Theorem 10.Optimal trajectories contain no more than 18 control swéshSpecif-
ically,

(i) optimal spin trajectories contain zero control switehend the maximum dura-
tion of an optimal spin trajectory is;
(i) optimal roll trajectories contain at most 8 control stehes;
(iif) optimal shuffle trajectories contain at most 7 contswlitches;
(iv) optimal tangent trajectories contain at most 12 cohswitches if the trajec-
tory is non-monotonic i, and at most 18 control switches if the trajectory is
monotonic iry;

Proof: (Sketch) The proof fospintrajectories is obvious. For eachrofl, shuf-
fle, andtangentrajectories we slice, reorder, or reflect segments to coctstlterna-
tive trajectories that take the same time, but are not extefince these equal-cost
trajectories are not extremal, neither these nor the algall, shuffle andtangent
are optimal. ]

Theorem 11.There exist bounds on the displacements along twed§ axis beyond
which spin, roll, and shuffle trajectories are not optimal garticular,
(i) Roll trajectories withz-displacement more thaﬁ‘l\of—f are not optimal.
(ii) Shuffle trajectories with:-displacement more thaﬁ%ﬁ and# displacement
more than60° are not optimal.
(iif) Tangent trajectories are not optimal for configuratie that are separated by
more thanl20°, with distance between the configurations less than

Proof: (Sketch) Theorem 10 gives the maximum number of segmerttsdiha
prise optimal trajectories of each class. We compute thanlige of each segment for
each class. [ ]
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Theorem 12.Spin, Roll, Shuffle, and Tangent trajectories are each agtfior at
least one pair of start and goal configurations of the ommeciional vehicle.

Proof: (Sketch) For each class, we explicitly construct a pair aftsind goal
configurations for which no other trajectory class is optirkar example, if the goal
is sufficiently far away, naooll, spin or shuffletrajectory can be optimal, since there
are no more than nine segments, and each segment is of bolendéd Therefore
atangenttrajectory is optimal. [ ]

8 Open problems

We have presented a complete and minimal classificationtohaptrajectories, and
explicit descriptions of each trajectory. However, we hagtaddressed the problem
of determining which of these trajectories is optimal foraatjzular pair of start and
finish configurations. For the problem of determining thers¥si trajectories for a
steered car, Reeds and Shepp [9] suggest the simple apprbadumerating all
possible structures that connect two configurations, antheming the time of each.
A similar approach should be possible for the omnidirectlomhicle.

Soueres and Laumond [13] determined the com@etthesiof optimal trajec-
tories for the steered car: an explicit mapping from pairsaifigurations to trajecto-
ries. Balkcom and Mason [1] determined the synthesis féeiftial-drive vehicles.
Such aresult for the omnidirectional vehicle would remdwerieed for enumerating
and comparing all trajectories between a pair of configanati and would give the
metric on the configuration space more explicitly.

The current work also does not consider the presence of dbstalVe expect
that optimal trajectories among obstacles would consisegments of obstacle-free
trajectories, and segments that follow the boundary of tistazles.

There are also broader questions. The shortest or fastgsttories are now
known for a few examples of specific systems: steered cagsjifferential drive,
and the omni-directional vehicle considered here. Theltesbare some features in
common; each of the optimal trajectories can be describeddiipn of the robot rel-
ative to a switching line in the plane. The trajectories teesed cars include arcs of
circles and straight lines; the trajectories for diffefaidrives include spins in place
and straight lines. The trajectories for the current systestude straight lines, arcs
of circles, and spins in place, and the system could in thetesbe considered a hy-
brid of a steered car and a differential drive. What geneatibbns are possible, and
can the optimal trajectories be determined for a generichar@sm whose design
is described in terms of a set of variable parameters? Whithanism should be
chosen to be most efficient for a given distribution of stad goal configurations?
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