
Asymptotically Optimal Kinodynamic Motion
Planning for Self-Reconfigurable Robots

John H. Reif1 and Sam Slee1

Department of Computer Science, Duke University, Durham, NC, USA.
{reif,sgs}@cs.duke.edu

Summary. Self-reconfigurable robots are composed of many individual modules
that can autonomously move to transform the shape and structure of the robot. In
this paper we present a kinodynamically optimal algorithm for the following “x-axis
to y-axis” reconfiguration problem: given a horizontal row of n modules, reconfigure
that collection into a vertical column of n modules. The goal is to determine the
sequence of movements of the modules that minimizes the movement time needed to
achieve the desired reconfiguration of the modules. Prior work on self-reconfigurable
(SR) robots assumed a constant velocity bound on module movement and so re-
quired time linear in n to solve this problem.

In this paper we define an abstract model that assumes unit bounds on various
physical properties of modules such as shape, aspect ratio, mass, and the maximum
magnitude of force that an individual module can exert. We also define concrete
instances of our abstract model similar to those found in the prior literature on
reconfigurable robots, including various examples where the modules are cubes that
are attached and can apply forces to neighboring cubes. In one of these concrete
models, the cube’s sides can contract and expand with controllable force, and in
another the cubes can apply rotational torque to their neighbors. Our main result
is a proof of tight Θ(

√
n) upper and lower bounds on the movement time for the

above reconguration problem for concrete instances of our abstract model.

This paper’s analysis characterizes optimal reconfiguration movements in terms
of basic laws of physics relating force, mass, acceleration, distance traveled, and
movement time. A key property resulting from this is that through the simultaneous
application of constant-bounded forces by a system of modules, certain modules
in the system can achieve velocities exceeding any constant bounds. This delays
modules with the least distance to travel when reconfiguring in order to accelerate
modules that have the farthest to travel. We utilize this tradeoff in our algorithm
for the x-axis to y-axis problem to achieve an O(

√
n) movement time.

2 John H. Reif and Sam Slee

Fig. 1. The x-axis to y-axis problem: transforming a row of modules into a column.
Our algorithm uses an intermediate step of forming a square.

1 Introduction

This paper develops efficient algorithms by treating reconfiguration as a kino-
dynamic planning problem. Kinodynamic planning refers to motion planning
problems subject to simultaneous kinematic and dynamics constraints [3]. To
that end, in this paper we define an abstract model for modules in SR robots.
This extends the definitions of previous models [4, 5] by setting fixed unit
bounds on a module’s shape, aspect ratio, mass, and the force it can apply,
among other requirements.

To exhibit the significance of these bounds we consider the following “x-
axis to y-axis” reconfiguration problem. Given a horizontal row of n modules,
reconfigure that collection into a vertical column of n modules. This simple
problem, illustrated in Figure 1, provides a worst-case example in that Ω(n)
modules must move Ω(n) module lengths to reach any position in the goal
configuration regardless of that goal column’s horizontal placement. Any hor-
izontal positioning of the vertical column along the initial row configuration
is deemed acceptable in our treatment of the problem in this paper.

We define the movement time of a reconfiguration problem to be the time
taken for a system of n modules to reconfigure from an initial configuration
to a desired goal configuration. Modules are assumed to be interchangeable
so the exact placement of a given module in the initial or goal configuration
is irrelevant. An implicit assumption in various prior papers on reconfigurable
robot motion planning [6, 4, 7] is that the modules are permitted only a fixed
unit velocity. This assumption is not essential to the physics of these systems
and has constrained prior work in the area.

For the x-axis to y-axis problem, if only one module in the SR robot is
permitted to move at a given time and with only a fixed unit velocity, a lower
bound of Ω(n2)-time is clear [6]. Allowing concurrent movement of modules,
a movement time of O(n) is possible while still keeping all modules connected
to the system and keeping unit velocities. However, we observe that faster

Asymptotically Optimal Kinodynamic Planning for SR Robots 3

reconfiguration is possible if we do not restrict modules to move at a fixed,
uniform pace.

Another major principle that we use, and that has seen use in prior re-
configuration algorithms [8, 1], is what we refer to as the principle of time
reversal. This principle is simply that executing reconfiguration movements in
reverse is always possible, and they take precisely the same movement time as
in the forward direction. This is, of course, ignoring concerns such as gravity.
Otherwise an example of rolling a ball down a hill would require less time or
less force than moving that ball back up the hill. We ignore gravity and use
the principle of time reversal extensively in the work of this paper.

Before continuing further, it will be useful to define some notation that we
will use throughout the remainder of this paper. As given above, let n denote
the number of modules in the SR robot undergoing reconfiguration. In the
initial row configuration of the x-axis to y-axis problem, let the modules be
numbered 1, . . . , n from left to right. Let xi(t) be the x-axis location of module
i at time t. Similarly, let vi(t) and ai(t) be the velocity and acceleration,
respectively, of module i at time t. For simplicity, the analysis in our examples
will ignore aspects such as friction or gravity. This simplification does make
this paper’s results more theoretical in nature. Yet, providing motion planning
bounds for fundamental reconfiguration problems like the one considered here
are important for understanding what is possible for this class of robots.

In the following Section 2, we differentiate between different styles of self-
reconfigurable robots and survey related work in the field. We begin intro-
ducing the work of this paper in Section 3 by giving our abstract model for
SR robot modules. Given the bounds set by this model, Section 4 references
physics equations that govern the movement of modules and define what re-
configuration performance is possible. To explain our algorithm, in Section 4
we also begin with a 1-dimensional case of n masses represented as a row of
n points with a separation of 1 unit between adjacent points, for some unit
of distance measure. The points will then contract so that they have only
1/2 unit separation. After showing that this contraction takes O(

√
n) move-

ment time while still satisfying the bounds of our abstract model, we then
immediately extend this result to a matching example using a known physical
architecture for modules.

Section 5 will then extend the result to a contraction/expansion case in
2 dimensions while maintaining the same time bound. This will then lead to
a O(

√
n) movement time algorithm for the x-axis to y-axis reconfiguration

problem. This algorithm recursively uses the 1-dimensional contraction oper-
ation and uses the reversible process of transforming the initial n module row
into an intermediate stage

√
n×

√
n cube. The process is then reversed to go

from the cube to the goal column configuration. Section 6 then matches this
with a Ω(

√
n) lower bound for the 1-dimensional example and the x-axis to

y-axis problem, showing both cases to be Θ(
√

n). Finally, the conclusion in
Section 7 summarizes the results of this paper.

4 John H. Reif and Sam Slee

2 Related Work

When developing models and algorithmic bounds for self-reconfigurable (SR)
robots (also known as metamorphic robots [10, 5, 6]) it is important to note
the style of SR robot we are dealing with. Two of the main types of SR robots
are closed-chain style robots and lattice style robots. Closed-chain SR robots
are composed of open or closed kinematic chains of modules. Their topology is
described by one-dimensional combinatorial topology. [1] To reconfigure these
modules are required to swing chains of other modules to new locations. One
such implementation of this design by Yim et al. has had several demonstra-
tions of locomotion [11].

For the other major style, lattice or substrate SR robots attach together
only at discrete locations to form lattice-like structures. Individual modules
typically move by walking along the surfaces formed by other modules. The
hardware requirements for this style of module are more relaxed than those
for closed-chain style systems. Here individual modules need only be strong
enough to move themselves or one or two neighbors. Closed-chain style mod-
ules typically must be strong enough to swing long chains of other modules.
The models and algorithms presented in this paper are meant for lattice style
modules.

Previous work by several research groups has developed abstract models
for lattice style SR robots. One of the most recent is the sliding cube model
proposed by Rus et al. [4]. As the name implies, this model represents modules
as identical cubes that can slide along the flat surfaces created by lattices
of other modules. In addition, modules have the ability to make convex or
concave transitions to other orthogonal surfaces. In this abstraction, a single
step action for a module would be to detach from its current location and then
either transition to a neighboring location on the lattice surface, or make a
convex or concave transition to another orthogonal surface to which it is next.
Transitions are only made in the cardinal directions (no diagonal movements)
and for a module to transition to a neighboring location that location must
first be unoccupied. Most architectures for lattice style SR robots satisfy the
requirements of this model.

One such physical implementation is the compressible unit or expanding
cube design [7, 8]. Here an individual module can expand from its original size
to double its length in any given dimension, or alternatively compress to half
its original length. Neighbor modules are then pushed or pulled by this action
to generate movement and allow reconfiguration. This particular module de-
sign is relevant because it provides a good visual aide for the algorithms we
present in this paper. For this purpose we also add the ability for expanding
cubes to slide relative to each other. Otherwise a single row of these modules
can only exert an expanding or contracting force along the length of that
row and is unable to reconfigure in 2 dimensions. Prior work has noted that
while individual expanding cube modules do not have this ability, it can be
approximated when groups of modules are treated as atomic units [7, 8].

Asymptotically Optimal Kinodynamic Planning for SR Robots 5

3 Abstract Model

We now begin introducing our results for this paper by defining our ab-
stract model for SR robot modules. It generalizes many of the requirements
and properties of reconfigurable robots. Our abstract model explicitly states
bounds on physical properties such as the size, mass, and force exerted for
each module. These properties will be utilized by the algorithms and com-
plexity bounds that later follow. The requirements of our model are described
by the following set of axioms.

• Each module is assumed to be an object in 3D with either (i) fixed shape
and size or (ii) has a limited set of geometric shapes that it can acquire.
In either case, the module also has a constant bound on its total volume
and the aspect ratio of its shape.

• Each module can latch onto or grip adjacent modules and apply to these
neighboring modules a force or torque.

• Generally, modules are all connected either directly or indirectly at any
time.

• For each module there is a constant bound on its mass.
• There is a constant bound on the magnitude of the force and/or torque

that a module may apply to those modules with which it is in contact.
• The motion of modules is such that they never collide with a velocity above

a fixed constant magnitude.
• For modules in direct contact with each other, the magnitude of the dif-

ference in velocity between these contacting modules is always bounded
by a constant.

• Each module, when attached (or latched) to other modules, can dynam-
ically set the stiffness of the attachment. This in addition to the ability
of the module to apply contraction/expansion or rotational forces at its
specified attachments.

Note: The axiom on the stiffness of the attachments to neighboring mod-
ules is required to ensure that forces (external to the module) are transmitted
through it to neighboring modules. We add this since contraction and/or rota-
tional forces along a chain of modules can accumulate to amounts more than
the unit maximum applied by any one module, and may need to be trans-
fered from neighbor to neighbor. Note also that we assume idealized modules
that act in synchronized movements under centralized control. This reduces
analysis difficulties for cases when many sets of modules operate in parallel.

While the axioms given above state important module requirements, more
concrete models are necessary. The sliding cube model and the expanding
cube hardware design described in the previous section satisfy the axioms
of our abstract model so long as bounds on the physical abilities of modules
are implied. In particular, for these modules the “stiffness” requirement means
that the transmitted forces are translational. The exact use of this will become
apparent in our first 1-dimensional example with expanding cube modules.

6 John H. Reif and Sam Slee

4 1D Force Analysis

All analysis of movement planning in this paper is based on the physical
limitations of individual modules stated in the last section. Given this abstract
model, we can now make use of the elementary equations of Newtonian physics
governing the modules’ movement in space and time. For these equations we
use the notation first mention in Section 1. Let xi(t) be the position of object
i during movement time t. Similarly, vi(t) is its velocity after time t. Finally,
given an object i with mass mi, let Fi be the net force applied to that object
and ai be the resulting constant acceleration. Although the relevant equations
are basic, we state them here so that they can be referred to again later in
the paper:

Fi = miai (1)

xi(t) = xi(0) + vi(0)t +
1
2
ait

2 (2)

vi(t) = vi(0) + ait . (3)

In the first equation we get that a net force of Fi is required to move an
object with mass mi at a constant acceleration with magnitude ai. In the
second equation, an object’s location xi(t) after traveling for a time t is given
by it’s initial position xi(0), it’s initial velocity vi(0) multiplied by the time,
and a function of a constant acceleration ai and the time traveled squared.
Similarly, the third equation gives the velocity after time t, vi(t), to be the
initial velocity vi(0) plus the constant acceleration ai multiplied by the time
traveled.

All modules in the examples that follow are assumed to have unit mass
m = 1 and sides with unit length 1. Our algorithms all require 2 stages of
motion: one stage to begin motion and a second stage to slow it and ensure
zero final velocity. So, we assume that each module is capable of producing
a unit amount, 1, of force once for each stage. This still keeps within the
constant-bounded force requirement of our abstract model. For an expanding
cube module this unit force is capable of contracting or expanding it in unit
time while pulling or pushing one neighbor module. Also, since the module
has unit mass, by equation (1) we get a bound on its acceleration a ≤ 1 given
the force applied in just a single motion stage. Again, all concerns for friction
or gravity (or a detailed description of physical materials to ensure the proper
stiffness of modules) are ignored to simplify calculations.

Before tackling the x-axis to y-axis reconfiguration problem, we first begin
by analyzing a simpler 1-dimensional case which we will refer to as the Point
Mass Contraction problem. Here a row of n point masses will contract from a
total length of n units, to a length of n/2. Although these point masses are not
connected and do not grip each other, they otherwise satisfy the axioms of our
model. After showing this reconfiguration to take O(

√
n) movement time, we

Asymptotically Optimal Kinodynamic Planning for SR Robots 7

will show that same result holds for a case with expanding-cube style modules
instead of point masses. This 1-dimensional contraction case, which we refer
to as the Squeeze problem, will be a recursive step in our algorithm for the
x-axis to y-axis reconfiguration problem.

We assume the initial configuration consists of an even number n of point
masses arranged in a row on the x-axis, each initially having 0 velocity. For
i = 1, . . . , n the ith point initially at time t = 0 has x-coordinate xi(0) = i−
(n+1)/2. We assume each point has unit mass and can move in the x-direction
with acceleration magnitude upper bounded by 1. For simplicity, we assume no
friction nor any gravitational forces. Our goal configuration at the final time
T is the point masses arranged in a row on the x-axis with 0 final velocity,
each distance 1/2 from the next in the x-axis direction, so that for i = 1, . . . , n
the ith point at the final time T has x-coordinate xi(T) = xi(0)

2 = i
2 −

n+1
4 .

To differentiate notation, we’ll use parentheses to denote a function of
time, such as xi(t), and square brackets to denote order of operations, such as
2 ∗ [3 − 1] = 4. Furthermore, we require that the velocity difference between
consecutive points is at most 1, and that consecutive points never get closer
than a distance of 1/2 from each other. Given this, our goal is to find the
minimal possible movement time duration from the initial configuration at
time 0 to final configuration at time T .

Lemma 1. The Point Mass Contraction problem requires at most total move-
ment time T =

√
n− 1.

Proof: Fix T =
√

n− 1. For each point mass i = 1, . . . , n at time t, for
0 ≤ t ≤ T , let xi(t) be the x-coordinate of the ith point mass at time t and
let vi(t), ai(t) be its velocity and acceleration, respectively, in the x-direction
(our algorithm for this Point Mass Contraction Problem will provide velocity
and acceleration only in the x-direction).

For i = 1, . . . , n the ith point mass needs to move from initial x-coordinate
xi(0) = i−(n+1)/2 starting with initial velocity vi(0) = 0 to final x-coordinate
xi(T) = xi(0)/2 = i/2 − (n + 1)/4 ending with final velocity vi(T) = 0. To
ensure the velocity at the final time is 0, during the first half of the movement
time the ith point mass will be accelerated by an amount αi in the intended
direction, and then during the second half of the movement time the ith point
mass will accelerate by −αi (in the reverse of the intended direction). For
i = 1, . . . , n, set that acceleration as: αi = n+1−2i

n−1 .
Note that the maximum acceleration bound is unit, since |αi| ≤ 1, sat-

isfying the requirement of our abstract model. During the first half of the
movement time t, for 0 ≤ t ≤ T/2, by equations (3) and (2) we get that the
velocity at time t is vi(t) = vi(0) + αit which implies vi(t) = αit and the
x-coordinate is given by:

xi(t) = xi(0) + vi(0)t +
αi

2
t2 = i− n + 1

2
+

αi

2
t2 .

8 John H. Reif and Sam Slee

At the midway point T/2, this gives the ith point mass velocity vi(T/2) =
αiT/2 and x-coordinate

xi(T/2) = i− n + 1
2

+
αi

2

[
T

2

]2

= i− n + 1
2

+
aiT

2

8
.

During the second half of the movement time t, for T/2 < t ≤ T , we will set
the ith point mass acceleration at time t to be ai(t) = −αi. By equation (3)
we get that the velocity at time t during the second half of the movement
time is:

vi(t) = vi (T/2)− αi

[
t− T

2

]
= αi

[
T

2

]
− αi

[
t− T

2

]
vi(t) = αi[T − t] .

and the x-coordinate given by equation (2) is

xi(t) = xi(T/2) + vi(T/2)
[
t− T

2

]
− αi

2

[
t− T

2

]2

xi(t) =
[
i− n + 1

2
+

αiT
2

8

]
+

αiT

2

[
t− T

2

]
− αi

2

[
t− T

2

]2

.

This implies that at the final time T , the ith point mass acceleration has
velocity vi(T) = αi(T − T) = 0 and x-coordinate

xi(T) =
[
i− n + 1

2
+

αiT
2

8

]
+

αiT

2

[
T − T

2

]
− αi

2

[
T − T

2

]2

xi(T) =
[
i− n + 1

2
+

αiT
2

8

]
+

αiT
2

4
− αiT

2

8

xi(T) = i− n + 1
2

+
αiT

2

4
.

Recalling that we initially set αi = n+1−2i
n−1 and T =

√
n− 1 we get:

xi(T) = i− n + 1
2

+
n + 1− 2i

4
=

i

2
− n + 1

4
=

xi(0)
2

.

So we get that xi(T) = xi(0)/2 as required. Moreover, the time any consec-
utive points are closest is the final time T , and at that time they are distance
1/2 from each other, as required in the specification of the problem.

It is easy to verify that the velocity difference between consecutive points
masses i and i + 1 is maximized at time T/2, and at that time the the mag-
nitude of the velocity difference is:

|vi(T/2)− vi+1(T/2)| = |αi − αi+1|T/2 ≤ 2
n− 1

√
n− 1
2

≤ 1

Asymptotically Optimal Kinodynamic Planning for SR Robots 9

as required in the specification of the problem. Thus, we have shown it pos-
sible to complete this problem in time T =

√
n− 1 while still satisfying the

axioms of our abstract model (excluding connectivity and gripping). 2

The Squeeze Problem With this result proved for the Point Mass Contrac-
tion problem, the same reconfiguration using expanding cube modules can be
solved by directly applying Lemma 1. We refer to this reconfiguration task
as the Squeeze problem and define it as follows. Assume an even number of
n modules, numbered i = 1, . . . , n from left to right as before. Keeping the
modules connected as a single row, our goal is to contract the modules from
each having length 1 to each having length 1/2 for some unit length in the
x-axis direction. This reconfiguration task is shown in Figure 2. Given the
bounds on the module’s physical properties required by our abstract model,
the goal is to perform this reconfiguration in the minimum possible movement
time T .

Fig. 2. The Squeeze problem: Expanding cube modules in (a), each of length 1,
contract to each have length 1/2 and form the configuration in (b).

Similarly, we define the Reverse Squeeze problem as the operation that un-
does the first reconfiguration. Given a connected row of n contracted modules,
each with length 1/2 in the x-axis direction, expand those modules to each
have length 1 while keeping the system connected as a single row. Since this
problem is exactly the reverse of the original Squeeze problem, steps for an
algorithm solving the Squeeze problem can be run in reverse order to solve the
Reverse Squeeze problem in the same movement time with the same amount
of force.

We first perform the force analysis for the case of solving the Squeeze
problem. At the initial time t = 0 cube i’s center x-coordinate has location
xi(0) = i− (n + 1)/2. Recall that each cube is assumed to have unit mass 1,
can grip its adjoining cubes, and can exert expanding or contracting forces
against those neighbors. Furthermore, a unit upper bound is assumed on the
magnitude of this force, which as stated earlier also causes an acceleration
bound ai ≤ 1 for all modules. We wish to contract the center x-coordinates of
the modules from location xi(0) to xi(0)/2 = i/2− [n + 1]/4 as before in the
contraction example with point masses. Again, we wish to find the minimum
possible movement time for contraction from the initial configuration at time
0 to the goal configuration at time T .

10 John H. Reif and Sam Slee

Lemma 2. The Squeeze problem requires at most total movement time T =√
n− 1.

Proof is given in the Appendix A.1.

Given that the above problem requires at most T =
√

n− 1 time to be
solved, we get the same result for the Reverse Squeeze problem.

Corollary 1. The Reverse Squeeze problem requires at most movement time
T =

√
n− 1.

Note that all of the operations performed in solving the Squeeze problem
can be done in reverse. The forces and resulting accelerations used to contract
modules can be performed in reverse to expand modules that were previously
contracted. Thus, we can reverse the above Squeeze algorithm in order to
solve the Reverse Squeeze problem in exactly the same movement time as the
original Squeeze problem. (Note: Although the forces are reversed in the Re-
verse Squeeze problem, the stiffness settings remain the same. It is important
to observe that without these stiff attachments between neighboring modules,
the accumulated expansion forces would make the entire assembly fly apart.)

5 2D Reconfiguration

The above analysis of the 1-dimensional Squeeze problem has laid the ground-
work for reconfiguration in 2 dimensions. This includes the x-axis to y-axis
reconfiguration problem which we will provide an algorithm for at the end of
this section. We build to that result by first looking at a simpler example of
2-dimensional reconfiguration that will serve as an intermediate step in our
final algorithm. We continue to use the same expanding cube model here as
was used in the previous section.

In that previous section a connected row of an even number of n expanding
cube modules was contracted from each module having length 1 in the x-axis
direction to each having length 1/2. We now begin with that contracted row
and reconfigure it into two stacked rows of n/2 contracted modules. Modules
begin with 1

2 × 1 width by height dimensions and then finish with 1 × 1
2

dimensions. This allows pairs of adjacent modules to rotate positions within
a bounded 1 × 1 unit dimension square.We denote this reconfiguration task
as the confined cubes swapping problem.

The process that we use to achieve reconfiguration is shown in Figure 3.
We begin with a row of modules, each with dimension 1

2 × 1. Here motion
occurs in two parts. First, fix the bottom edge of odd numbered modules so
that edge does not move. Do the same for the top edge of even numbered
modules. Then contract all modules in the y direction from length 1 to length
1/2. Note that to achieve this two counterbalancing forces are required: (1) a
force within each module to contract it, and (2) sliding forces between adjacent

Asymptotically Optimal Kinodynamic Planning for SR Robots 11

Fig. 3. Expanding cube modules contracting vertically (a - c), then expanding
horizontally (d - f). Here the scrunched arrow represents contraction and the 3
piece arrow denotes expansion.

modules in the row to keep the required top/bottom edges in fixed locations
as described earlier. This process creates the “checkered” configuration in part
(c) of Figure 3.

We can then reverse the process, but execute it in the x direction instead,
to expand the modules in the x direction and create 2 stacked rows of mod-
ules, each with dimension 1× 1

2 . Note that requiring certain edges to stay in
fixed locations had an important byproduct. This results in pairs of adjacent
modules moving within the same 1 × 1 square at all times during reconfig-
uration. This also means that the bounding box of the entire row does not
change as it reconfigures into 2 rows. This trait will be of great significance
when this reconfiguration is executed in parallel on an initial configuration of
several stacked rows.

Again, number modules i = 1, . . . , n from left to right and assume modules
have unit mass 1, can grip each other, and can apply contraction, expansion
and sliding forces. In this problem we will only use a unit force 1 total per
module for both stages of motion. This means a force of 1/2 applied in each
motion stage and, by the physics equations in Section 4, an acceleration upper
bounded by 1/2 in each stage as well. Finally, concerns for gravity or friction
are again ignored for the sake of simplicity. Given these bounds, our goal is
to find the minimum reconfiguration time for this confined cubes swapping
problem.

Lemma 3. The confined cubes swapping problem described above requires T =
O(1) movement time for reconfiguration.

Proof is given in the Appendix A.2.

Extending this analysis, we now consider the case of an m × n array of
normal, unit-dimension modules. That is, we have m rows with n modules
each. We wish to transform this into a 2m × n

2 array configuration. All of
the same bounds on the physical properties of modules hold and gravity and

12 John H. Reif and Sam Slee

friction are still ignored. Once more we wish to find the minimum movement
time T for this reconfiguration.

Fig. 4. Horizontal contraction from stage a to b. Vertical expansion from state e to
f . Note that the dimensions of the array remain unchanged through stages b - e.

Lemma 4. Reconfiguring from an m× n array of unit-dimension modules to
an array of 2m × n

2 unit-dimension modules takes O(
√

m +
√

n) movement
time.

Proofs are given in the Appendix A.3 and Appendix A.4.

The problem just analyzed may now be used iteratively to solve the x-axis
to y-axis reconfiguration problem. By repeatedly applying the above array
reconfiguration step, we double the height and halve the width of the array
each time until we progress from a 1× n to an n× 1 array of modules.

This process will take O(lg2 n) such steps, and so there would seem to be
a danger of the reconfiguration problem requiring an extra lg2 n factor in its
movement time. This is avoided because far less time is required to reconfigure
arrays in intermediate steps. Note that the O(

√
m +

√
n) time bound will be

dominated by the larger of the two values m and n. For the first b(lg2 n)/2c
steps the larger value will be the number of columns n, until an array of
b
√

nc× d
√

ne dimensions is reached. In the next step a d
√

ne× b
√

nc array of
modules is created, and from that point on we have more rows than columns
and the time bound is dominated by m.

Asymptotically Optimal Kinodynamic Planning for SR Robots 13

The key aspect is that the movement time for each reconfiguration step is
decreased by half from the time we begin until we reach an intermediate array
of dimensions about

√
n×

√
n. By the principle of time reversal it should take

us the same amount of movement time to go from a single row of n modules
to an

√
n ×

√
n cube as it does to go from that cube to a single column

of n modules. This tactic is now used in our analysis to find the minimum
reconfiguration time for the x-axis to y-axis problem.

Lemma 5. The x-axis to y-axis reconfiguration problem only requires move-
ment time O(

√
n).

Proof: For simplicity, let n be even and let n = 2p for some even integer
p > 0. Let r(i) and c(i) be the number of rows and columns, respectively, in
the module system after i reconfiguration steps. From the previous Lemma 4
in this section we have that a single step of reconfiguring an m × n array of
modules into a 2m× n

2 array requires time O(
√

m +
√

n). Initially, assuming
a large initial row length, then c(0) = n, n � 1, and the reconfiguration step
takes O(

√
n) time. For subsequent steps we still have c(i) � r(i), but c(1) =

n/2, c(2) = n/4, etc. while r(1) = 2, r(2) = 4, etc. In general c(i) = n/2i and
r(i) = 2i. Eventually, we get c(i′) = r(i′) =

√
n at i′ = (lg2 n)/2. Up until

that point the time for each reconfiguration stage i + 1 is O(
√

c(i)). So, the
total reconfiguration time to that point is given by the following summation:

(lg2 n)/2∑
i=0

√
c(i) =

(lg2 n)/2∑
i=0

√
n

2i
≤
√

n

∞∑
i=0

(
1√
2

)i

=
√

n

1− (1/
√

2)
= O(

√
n) .

Thus we have that reconfiguration from the initial row of n modules to
the intermediate

√
n×

√
n square configuration takes O(

√
n) movement time.

Reconfiguring from this cube to the goal configuration is just the reverse
operation: we are simply creating a “vertical row” now instead of a horizontal
one. This reverse operation will then take the exact same movement time using
the same amounts of force as the original operation, so it too takes O(

√
n)

movement time. Thus, we have that while satisfying the requirements of our
abstract model the x-axis to y-axis problem takes O(

√
n) movement time. 2

6 Lower Bounds

In Section 4 we showed that the 1-dimensional Point Mass Contraction Prob-
lem, reconfiguring a row of n point masses with unit separation to have 1/2
distance separation, could be solved in time T =

√
n− 1. We now show a

matching lower bound for this problem. Again, the same assumptions about
the physical properties of the point masses are held and concerns for friction
or gravity are ignored.

14 John H. Reif and Sam Slee

Lemma 6. The Point Mass Contraction Problem requires at least total move-
ment time T =

√
n− 1.

Proof: Consider the movement of the 1st point mass which needs to move
from initial x-coordinate x1(0) = 1 − [n + 1]/2 = 1/2 − n/2 starting with
initial velocity v1(0) = 0 to final x-coordinate x1(T) = x1(0)/2 = 1/4 − n/4
and ending with final velocity v1(T) = 0. The total distance this point mass
needs to travel is x1(T)− x1(0) = [n− 1]/4.

Taking into consideration the constraint that the final velocity is to be
0, it is easy to verify that the time-optimal trajectory for point mass i = 1
is an acceleration of 1 in the positive x-direction from time 0 to time T/2,
followed by a reverse acceleration of the same magnitude in the negative x-
direction. The total distance traversed in each of the two stages is at most
[a1/2]t2 = 1 ∗ [T/2]2/2. So, the total distance traversed by the 1st point mass
is at most [T/2]2 = T 2/4 which needs to be [n−1]/4. Hence, T 2/4 ≥ [n−1]/4
and so T ≥

√
n− 1. 2

Hence, we have shown:

Theorem 1. The lower and upper bound for the total movement time for the
Point Mass Contraction Problem is exactly T =

√
n− 1.

As in Section 4, we can use an extension of this lower bound argument to
prove the following lemma.

Lemma 7. The Squeeze problem requires total movement time Ω(
√

n).

Proof is given in the Appendix A.5.

Hence, we have also shown:

Theorem 2. The total movement time for the Squeeze problem is both upper
and lower bounded by Θ(

√
n).

By the same argument, we can also get a bound on the x-axis to y-axis
problem.

Corollary 2. The x-axis to y-axis reconfiguration problem requires total move-
ment time Ω(

√
n).

Proof: Given the initial row configuration and the goal column configuration,
pick the end of the row farthest away from the goal column configuration’s
horizontal placement. Select the n/c cubes at this end of the row, for some
real number greater than 2. Among these n/c cubes we can again find some
ith cube that must have an acceleration at most ai ≈ c/2 and that it must
travel a distance ≥ n[1/4 − 1/[2c]] + 1/4. This again leads to the movement
time being bounded as T = Ω(

√
n). 2

Asymptotically Optimal Kinodynamic Planning for SR Robots 15

7 Conclusion

In this paper we have presented a novel abstract model for self-recongurable
(SR) robots that provides a basis for kinodynamic motion planning for these
robots. Our model explicitly requires that SR robot modules have unit bounds
on their size, mass, magnitude of force or torque they can apply, and the
relative velocity between directly connected modules. The model allows for
feasible physical implementations and permits the use of basic laws of physics
to derive improved reconguration algorithms and lower bounds.

In this paper we have focused on a simple and basic reconfiguration prob-
lem. Our main results were tight upper and lower bounds for the movement
time for this problem. Our recursive Squeeze algorithm recongures a horizontal
row of n modules into a vertical column in O(

√
n)-time. This result signifi-

cantly improves on the running time of previous reconfiguration algorithms.
Our algorithm satisfies the restrictions imposed by our abstract model and we
also show that it is kinodynamically optimal given the assumptions of that
model.

While carefully using the forces produced by modules, our analysis ignored
forces caused by gravity and friction. Addressing these concerns is a topic for
future work as the algorithm is brought closer to physical implementation.
Also, the algorithm given was a centralized planner and only solved a simple
example to demonstrate how faster reconfiguration algorithms were possible.

For reconfiguration in more general cases, the simplest extension of this
paper’s results would be movement between configurations with contiguous
rows and columns. By excluding holes from configurations in this way, we can
reconfigure the robot into a single horizontal row in the same manner that we
reconfigured rectangles in intermediate steps of our x-axis to y-axis algorithm.
Then by the principle of time reversal we can reconfigure from that row to any
other state with contiguous rows and columns. Finally, the multipart nature
of SR robots makes distributed algorithms a necessity. Extending our lower-
bound analysis to more complex cases, and developing distributed algorithms
to match those bounds, is a topic of future work.

References

1. A. Casal and M. Yim. Self-reconfiguration planning for a class of modular
robots. In Proceedings of SPIE, Sensor Fusion and Decentralized Control in
Robotic Systems II, vol. 3839, pages 246–255, 1999.

2. G. Chirikjian, A. Pamecha, and I. Ebert-Uphoff. Evaluating efficiency of self-
reconfiguration in a class of modular robots. Journal of Robotic Systems, 13(5),
May 1996.

3. Bruce Randall Donald, Patrick G. Xavier, John F. Canny, and John H. Reif.
Kinodynamic motion planning. Journal of the ACM, 40(5):1048–1066, 1993.

4. K. Kotay and D. Rus. Generic distributed assembly and repair algorithms for
self-reconfiguring robots. In Proc. of IEEE Intl. Conf. on Intelligent Robots and
Systems, 2004.

16 John H. Reif and Sam Slee

5. A. Pamecha, C. Chiang, D. Stein, and G. Chirikjian. Design and implementation
of metamorphic robots. In Proceedings of the 1996 ASME Design Engineering
Technical Conference and Computers in Engineering Conference, 1996.

6. A. Pamecha, I. Ebert-Uphoff, and G. Chirikjian. Useful metrics for modular
robot motion planning. In IEEE Trans. Robot. Automat., pages 531–545, 1997.

7. Serguei Vassilvitskii, Jeremy Kubica, Eleanor Rieffel, John Suh, and Mark
Yim. On the general reconfiguration problem for expanding cube style mod-
ular robots. In Proceedings of the 2002 IEEE Int. Conference on Robotics and
Automation, pages 801–808, 11-15 May 2002.

8. M. Vona and D. Rus. Self-reconfiguration planning with compressible unit mod-
ules. In 1999 IEEE International Conference on Robotics and Automation, 1999.

9. J. Walter, E. Tsai, and N. Amato. Algorithms for fast concurrent reconfiguration
of hexagonal metamorphic robots. IEEE Transactions on Robotics, 21(4):621–
631, August 2005.

10. Jennifer E. Walter, Jennifer L. Welch, and Nancy M. Amato. Distributed re-
configuration of metamorphic robot chains. In PODC ’00, pages 171–180, 2000.

11. Mark Yim, David Duff, and Kimon Roufas. Polybot: A modular reconfigurable
robot. In ICRA, pages 514–520, 2000.

Asymptotically Optimal Kinodynamic Planning for SR Robots 17

APPENDIX

A Force Analysis Proofs

A.1 The Squeeze Problem

Proof of Lemma 2.

Proof: For each cube i = 1, . . . , n at time t for 0 ≤ t ≤ T let xi(t) be the
x-coordinate of the center point of the ith cube and let vi(t) be its velocity in
the x-direction. (Our algorithm for this Squeeze problem will provide velocity
only in the x-direction.)

In the Squeeze problem, there will be an expansion/contraction force ap-
plied by each ith cube to its neighbors that are located just before and just
after it on the x-axis. These consecutive neighbors are assumed to be gripped
together. Let αi = [n + 1 − 2i]/[n − 1] be the acceleration of each module i
just as defined in the Point Mass Contraction problem.

During the first half of the movement time t, for 0 ≤ t ≤ T/2, the ith
cube will be subjected to external force Fi,L(t) =

∑j=i−1
j=1 aj(t) from its left

neighbor (the i− 1th cube) and will be subjected to external force Fi,R(t) =∑j=n
j=i+1 aj(t) from its right neighbor (the i + 1th cube). During this time, we

let the ith cube apply the additional contraction force ai(t) = αi. This will
result in the constant acceleration of the center of the ith cube by αi.

During the second half of the movement time t, for T/2 < t ≤ T , the
ith cube will be subjected to external force Fi,L(t) =

∑j=i−1
j=1 −aj(t) from its

left neighbor and will be subjected to external force Fi,R(t) =
∑j=n

j=i+1−aj(t)
from its right neighbor. During this time we will let the ith cube apply the
additional force ai(t) = −αi. This will result in the constant deceleration of
the center of cube i by −αi.

The above sums describing forces Fi,L(t) and Fi,R(t) are due to the ac-
cumulation of the forces (the individual mass of each cube is unit, so each
contributed force is just the jth cube’s acceleration) along the chain of cubes
(to the left or right, respectively) of the ith cube. Note that the model’s ax-
iom on allowed specification of stiffness of the attachments to neighbors of
a module is required to ensure forces (external to the module) are transmit-
ted between neighbors of the module. (For example, during the middle time
phases of the Squeeze algorithm, the middle two modules indexed n/2 and
n/2 + 1 can each only apply a unit maximum force between each other, but
there is an accumulated force transmitted between them of a constant times
n.) For our Squeeze algorithm, this is immediate since the accumulated forces
Fi,L(t) and Fi,R(t) are precisely known for each ith module.

It is useful to observe that
∑j=n

j=1 aj(t) = 0 due to the definition of the aj(t)
(that is, the center of the overall system does not change x-coordinates). This
implies that at all times the total sum of forces involving the the ith cube —

18 John H. Reif and Sam Slee

including both external forces as well as forces providing acceleration of the
mass of the ith cube — is balanced: Fi,L(t)+Fi,R(t)+ai(t) =

∑j=n
j=1 aj(t) = 0.

In summary, the resulting acceleration of the center point of the ith cube
is ai(t) = αi for 0 ≤ t ≤ T/2 and is ai(t) = −αi for T/2 < t < T . Hence,
we have made the center of each cube translate in the x-axis on a trajectory
exactly the same as the ith point mass of our solution to the Point Mass
Contraction Problem. That way, we satisfy the required movement restrictions
of the Squeeze Problem. That is, for i = 1, . . . , n the center of the ith cube will
move from the initial x-coordinate xi(0) = i − [n + 1]/2 starting with initial
velocity vi(0) = 0 to final x-coordinate xi(T) = xi(0)/2 = i/2− [n + 1]/4 and
ending with final velocity vi(T) = 0. 2

A.2 The Confined Cubes Swapping Problem

Proof of Lemma 3.

Proof: First consider the step of transforming the single row of modules
into the intermediate “checkered” configuration. In this step all forces and
movement occur in the y-axis direction. Let the number of modules n be
even. From the initial row configuration let the even numbered cubes i =
2, . . . , n be the modules that contract upwards while the odd numbered cubes
i = 1, . . . , n− 1 are contracted downwards.

As stated above, we wish to begin reconfiguration by keeping fixed the
location of top edges of even numbered (upward) modules. We also want to
fix the location of bottom edges of odd (downward) modules. This is done
by having sliding forces between adjacent modules to balance out contraction
forces. By definition an expanding cube module can exert enough force to
contract from length 1 to length 1/2 in O(1) movement time using a unit
amount of force while beginning and ending with zero velocity. To also allow
for sliding forces, let 1/4th of each module’s force go toward contracting it
while the other 3/4 of its force capability is left available to generate sliding
force.

A constant fraction of the original force still permits contraction to occur
in O(1) time. Specifically, if a force of 1 caused contraction in time T = 1
then from our equations in Section 4 we conclude that a force of 1/4 permits
contraction in time T =

√
4 = 2. Thus, set T = 2 as the movement time for

reconfiguration.
Since the contraction motions were suitably created by applying the con-

stant fraction 1/4 of the original force, we focus now on the sliding motions
by looking at the even numbered (upward) modules. In the initial configu-
ration, even and odd modules have their centers at the same y coordinate.
In the checkered configuration, even modules’ centers have a y coordinate a
distance of 1/2 above the odd modules’ center coordinates. This is created by
even modules’ centers moving up 1/4 unit distance and odd modules’ centers

Asymptotically Optimal Kinodynamic Planning for SR Robots 19

moving down 1/4 unit. Alternatively, we can think of it as the even mod-
ules’ centers moving 1/2 unit distance relative to the odd modules’ centers.
We focus on this relative separation between the center points of upward and
downward moving modules to simplify our analysis. To create this motion let
each module i = 1, . . . , n − 1 apply a force of 1/4 to each of its connection
boundaries in the proper direction to create sliding motion.

Given these force applications, the resulting force applied to each upward
moving (even) module i = 2, 4, . . . , n− 2 comes from 2 such boundaries and a
total force of (1/4 + 1/4) + (1/4 + 1/4) = 1. The exception is module n that
has only 1 such boundary and so only a force of 1/4 contributed from its lone
neighbor. This matter is resolved by module n applying all of its available
force of 3/4. Now all upward moving modules have a force of 1 applied to
them.

With unit masses for each of the modules, from equation (1) in Section 4
we get that a force of 1 will generate an acceleration of 1. Yet, as in previous
examples we first need an acceleration in the direction of movement, then a
reverse acceleration in the opposite direction to ensure a final velocity of 0.
Splitting the force evenly between 2 stages, we will have accelerations with
magnitude 1/2. Let y(t) denote an upward moving module’s position relative
to its neighboring downward moving modules, while v(t) and a(t) denote its
velocity and acceleration, respectively. In the first stage, during 0 ≤ t ≤ T/2,
a(t) = 1/2, and during T/2 < t ≤ T , a(t) = -1/2. We require only 3 such
values y(t), v(t), and a(t) because in this idealized model all modules will be
moving in unison.

The equations describing this motion are the same as those found during
the work of Section 4. At the final time T the final velocity is given by v(T) =
1/2(T − T) = 0 as desired. The final position is given by y(T) = a(0)T 2/4 =
(1/2) ∗ (4/4) = 1/2 exactly as desired. Finally, we know that the velocity
difference between adjacent modules never exceeded a constant bound because
velocities themselves never exceeded a constant bound in this movement. Also,
note that forces in this system are balanced with the contracting modules
absorbing the sliding motion just described to result in the entire system
keeping the same bounding box throughout reconfiguration.

For the second reconfiguration step, we perform the reverse of the contrac-
tion operation just described. The only difference is instead of the modules
expanding in the y-axis direction, they do so in the x-axis direction. By the
principle of time reversal described in the Section 1 this operation can be
done in exactly the same amount of time and using the same amount of force
as the prior operation (and forces are balanced in the same way). Thus we
also get that this step takes O(1) time, thereby completing the confined cubes
swapping problem in O(1) total time. 2

20 John H. Reif and Sam Slee

A.3 2D Array Reconfiguration Problem: Proof 1

Proof of Lemma 4.

Proof: (Note that an alternate proof giving more extensive mathematical
analysis is given in Appendix A.4.) For simplicity, let n be even. This re-
configuration problem will be completed in three stages. First the initial m
rows will be simultaneously contracted from total length n to total length
n/2. This is done in O(

√
n) time by contracting each module from length

1 to length 1/2 as shown in Section 4. Note that forces for this contraction
problem occur only between modules in the same row and only in the x-axis
direction. Therefore the time bound result holds because the time required
to contract a given row is independent of the number of parallel rows also
contracting. Note that for simplicity, we are dealing with ideal modules and
ignore the possibility of “shearing” where one row might expand faster than
a neighboring row.

For the second stage we perform the confined cubes swapping problem to
turn each of the m rows of n contracted modules into 2m vertically stacked
rows each having n/2 contracted modules. The initial m rows are contracted
in the x-axis direction while the final 2m rows are contracted in the y-axis di-
rection. In the analysis of this problem given earlier in this section, the motion
of a given initial row of modules was shown to be self-contained. The forces
of the system were balanced and a given “row” maintains its overall position
and dimensions of width and height — even while transforming from 1 row
to 2 stacked rows — through careful use of the modules’ contraction abilities.
Thus, we find that this operation also maintains its previously constructed
running time regardless of the number of rows acting in parallel. Hence, this
second reconfiguration stage takes O(1) movement time.

Finally, for the third stage we expand the 2m rows from having total height
m to total height 2m. This is done by having each module expand from length
1/2 in the y-axis direction to length 1. Note that forces for this reconfigura-
tion stage occur only in the y-axis direction. So, the expansion of 1 column
is independent of the expansion of other columns if we ignore the possibility
of shearing. This problem is then the reverse operation of contracting a col-
umn or row of 2m modules. By the principle of time reversal this expansion
operation will take exactly the same amount of time and the same amount
of force for reconfiguration as the contraction example. Therefore we can use
the result of Section 4 that this operation takes O(

√
m) movement time while

still satisfying the bounds for the physical properties of modules.
Combined, we have 3 distinct reconfiguration operations that reconfigure

the entire array of modules from the initial configuration to the goal configu-
ration as desired. All of this has been shown to happen while still satisfying
the bounds imposed by our abstract model for the modules. Since the 3 stages
took O(

√
n), O(1), and O(

√
m) time, added together we get that reconfigur-

Asymptotically Optimal Kinodynamic Planning for SR Robots 21

ing from an m × n array of non-contracted modules to an array of 2m × n
2

non-contracted modules takes O(
√

m +
√

n) movement time. 2

A.4 2D Array Reconfiguration Problem: Proof 2

Alternate proof of Lemma 4.

Proof: Assign to the modules array coordinates (i, j) for being in row i and
column j, counting from the bottom and from the left of the array, respec-
tively. Let x(i,j)(t) and y(i,j)(t) denote the x and y coordinates of module
(i, j)’s center at time t. Furthermore, let vx

(i,j)(t) and ax
(i,j)(t) give the velocity

and acceleration, respectively, of module (i, j) at time t in the x direction.
Let vx

(i,j)(t) and ax
(i,j)(t) do the same in the y direction. This reconfiguration

problem will be completed in three stages, all of which have already been an-
alyzed: the Squeeze problem, the confined cubes swapping problem, and the
Reverse Squeeze problem.

In the first motion stage (state (a) to state (b) if Figure 5) all m rows
contract from length n to length n/2 in time T1. All motion and forces occur
in the x direction and the location of module (i, j) is described by x(i,j)(0) =
j − [n + 1]/2 and x(i,j)(T1) = x(i,j)(0)/2 = j/2 − [n + 1]/4. Since forces and
motion only occur along individual rows (ignoring shearing) we treat each
row individually and find the same reconfiguration problem as was solved
in the the Squeeze problem. Solving in the same way, we first accelerate for
0 ≤ t ≤ T1/2 and decelerate for T1/2 ≤ t ≤ T1 we set αx

(i,j) = n+1−2j
n−1

as the magnitude of that acceleration. As previously found, this leads to a
final velocity of vx

(i,j)(T1) = αx
(i,j)(T1 − T1) = 0 and a final x coordinate of

x(i,j)(T1) = j− n+1
2 + [αx

(i,j)[T1]2]/4. With our stated values for αx
(i,j), setting

T1 =
√

n− 1 gives x(i,j)(T1) = j/2 − [n + 1]/4 = x(i,j)(0)/2 as desired. All
forces are balanced and unit bound requirements are met just as during our
analysis of the Squeeze problem.

For the second stage of motion, each row is now independently solving
the confined cubes swapping problem. Let the contraction motion take place
from T1 < t ≤ T2 and the expansion motion take place during T2 < t ≤ T3.
Let modules in even numbered columns move upward while modules in odd
numbered columns move downward. Initially, y(i,j)(T1) = i − [m + 1]/2 for
all modules. For even numbered modules, if i ≤ m/2 then y(i,j)(T2) = i −
[m + 1]/2 − 1/4 and if i > m/2 then y(i,j)(T2) = i − [m + 1]/2 + 1/4. This
is because all of these modules move upward, but our location for y = 0
is through the middle of the module array. For odd numbered modules if
i ≤ m/2 then y(i,j)(T2) = i− [m + 1]/2 + 1/4 and if i > m/2 then y(i,j)(T2) =
i− [m + 1]/2− 1/4.

The shift in horizontal locations during the expansion stage is similar. For
modules formerly in even numbered columns with j ≤ n/2 we have x(i,j)(T2) =
j/2 − [n + 1]/4 and x(i,j)(T3) = j/2 − [n + 1]/4 + 1/4 while for columns

22 John H. Reif and Sam Slee

with j > n/2 it is x(i,j)(T3) = j/2 − [n + 1]/4 − 1/4. For modules formerly
in odd numbered columns it is the opposite: if j ≤ n/2 then x(i,j)(T3) =
j/2− [n + 1]/4− 1/4 and if j > n/2 then x(i,j)(T3) = j/2− [n + 1]/4 + 1/4.
This is because even numbered modules expand to the left while the odd
numbered modules under them expand to the right. Note that by the analysis
of the confined cubes swapping problem this stage takes time T3−T1 = O(1).
Alternatively, we can just note that every modules moves only O(1) distance
and so O(1) movement time is to be expected.

Now, from time T3 to T4 we need to perform the Reverse Squeeze problem
and expand the modules in the vertical direction (state (e) to state (f) in Fig-
ure 5). The difficulty is that the number of rows has now doubled as modules
from even numbered columns moved on top of modules from odd numbered
columns. So, for each module (i, j) from an even numbered column, assign
it a new row number k = 2i. For each module (i, j) from an odd numbered
column, assign it k = 2i−1. Now, let yk(t) be the vertical location of a module
in row k. At time t = T3 we have yk(T3) = k/2− [2m+1]/4. After expansion,
we wish to have yk(T4) = k− [2m + 1]/2. This is exactly the Reverse Squeeze
problem. So, we can again complete the expansion in to movement stages,
one to accelerate and one to decelerate. It can be verified that this can be
completed in time T4 − T3 =

√
2m− 1 (and by the principle of time reversal,

this should be expected).
Thus we have completed the reconfiguration task in 3 stages taking√

n− 1, O(1), and
√

2m− 1 time, respectively. Thus, we have that the to-
tal time for reconfiguration is O(

√
m +

√
n). 2

A.5 A Lower Bound for the Squeeze Problem

Proof of Lemma 7.

Proof: Consider the movement of the first n/c cubes i = 1, 2, . . . , n/c. Let c
be a real number strictly larger than 2. For i = 1, . . . , n the center of cube
i needs to move distance |xi(0) − xi(T)| = |[n + 1]/4 − i/2| from the initial
x-coordinate xi(0) = i − [n + 1]/2 starting with initial velocity vi(0) = 0 to
final x-coordinate xi(T) = xi(0)/2 = i/2 − [n + 1]/4 and ending with final
velocity vi(T) = 0. Note that this distance is at least∣∣∣∣n + 1

4
− i

2

∣∣∣∣ ≥ n

[
1
4
− 1

2c

]
+

1
4

for the first n/c cubes (those with indices from 1 to bn/cc) and the last n/c
cubes (those with indices from n − dn/ce+1 to n). This is a total of at least
n1 = 2[n/c − 1] cubes. The total force applied by all n cubes is at most n,
since by assumption each has a force magnitude upper bound 1.

Hence, since they have unit masses, the average acceleration (at their cen-
ter points) applied to each of these n1 = 2[n/c − 1] cubes can be at most

Asymptotically Optimal Kinodynamic Planning for SR Robots 23

n/n1 = c/[2[1 − c/n]] ≈ c/2. Thus, at least one of these cubes (say the ith
cube) has average acceleration at most ai ≈ c/2. But the ith cube needs to
traverse a distance of at least | [n + 1]/4− i/2 | ≥ n[1/4− 1/[2c]] + 1/4.

Moreover, the ith cube must start and end with 0 velocity, so it is easy to
verify that the time-optimal trajectory for its center point has an acceleration
of at most ai ≈ c/2 in the positive x-axis direction from time 0 to T/2,
followed by a reverse direction acceleration of the same magnitude but in the
negative x-axis direction.

The total distance traversed in each of the two stages is at most ait
2/2 =

[c/2][T/2]2/2, so the total distance traversed by the center of the ith cube is
at most [c/2][T/2]2 = cT 2/8 which needs to be ≥ n[1/4− 1/[2c]] + 1/4. Thus,

cT 2

8
≥ n

[
1
4
− 1

2c

]
+

1
4

T ≥

√
8n

c

[
1
4
− 1

2c

]
+

2
c

T ≥

√
2n

c

[
1− 2

c

]
+

2
c

T = Ω(
√

n) . 2

