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Abstract: In this paper we discuss the problem of planning safe paths amidst un-
predictably moving obstacles in the plane. Given the initial positions and the maxi-
mal velocities of the moving obstacles, the regions that are possibly not collision-free
are modeled by discs that grow over time. We present an approach to compute the
shortest path between two points in the plane that avoids these growing discs. The
generated paths are thus guaranteed to be collision-free with respect to the moving
obstacles while being executed. We created a fast implementation that is capable of
planning paths amidst many growing discs within milliseconds.

1 Introduction

An important challenge in robotics is motion planning in dynamic environ-
ments. That is, planning a path for a robot from a start location to a goal
location that avoids collisions with the moving obstacles. In many cases the
motions of the moving obstacles are not known beforehand, so often their
future trajectories are estimated by extrapolating current velocities (acquired
by sensors) in order to plan a path [2, 5, 10]. This path may become invalid
when some obstacle changes its velocity (say at time t), so then a new path
should be planned. However, there is actually no time for planning; as the
world is continuously changing, the computation would already be outdated
even before it is finished.

To overcome this problem, often a fixed amount of time, say τ , is reserved
for planning [6, 9]. The planner then takes the expected situation of the world
at time t + τ as initial world state, and the plan is executed when the time
t + τ has come. This scheme carries two problems:

• The predicted situation of the world at time t + τ may differ from the
actual situation when some obstacles change their velocities again during
planning. This may result in invalid paths.

⋆
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• The path the robot will follow between time t and time t + τ is not guar-
anteed to be collision-free, because this path was computed based on the
old velocities of the obstacles.

In this paper we take a first step to overcome these problems. We present
an approach to compute a path from a start location to a goal location that
is guaranteed to be collision-free, no matter how often the obstacles change
their velocities in the future. Replanning might still be necessary from time to
time, to generate trajectories with more appealing global characteristics, but
the two problems identified above do not occur in our case. The first problem
is solved by incorporating all the possible situations of the world at time t+ τ
in the world model. The second problem is solved as the computed paths are
guaranteed to be collision-free regardless of what the moving obstacles do.

We assume that all obstacles and the robot are modeled as discs in the
plane, and that the robot and each of the obstacles have a (known) maximum
velocity. The maximum velocity of the obstacles should not exceed the maxi-
mum velocity of the robot. The problem is solved in the configuration space,
that is, the radius of the robot is added to the radii of the obstacles, so that
we can treat the robot as a point.

Given the initial positions of each of the obstacles, the regions of the space
that are possibly not collision-free are modeled by discs that grow over time
with rates corresponding to the maximal velocities of the obstacles. Our goal
is to compute a shortest path (a minimum time path) from a start to a goal
configuration that avoids these growing discs (see Fig. 1).

Fig. 1. An environment with two moving obstacles and a shortest path. The pictures
show the growing discs at t = 0, t = 1 and t = 2, respectively. A small dot indicates
the position along the path.

Although computing shortest paths is a well studied topic in computational
geometry (see [8] for a survey), the problem we study in this paper is new. In
fact, it is a three-dimensional shortest path problem, as the time accounts for
an additional dimension. Such problems are NP-hard in general, yet we present
an O(n3 log n) algorithm (n being the number of discs) for our problem in the
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restricted case that all discs have the same growth rate.2 In case the growth
rates are different, we cannot give a time bound expressed in n. Instead, we
implemented a practical algorithm for this general case, that appears to work
well: Experimental results show that we are able to generate shortest paths
amidst many growing discs within only milliseconds of computation time.

The rest of the paper is organized as follows. We formally define the prob-
lem in Section 2. In Section 3 we examine the structure of shortest paths
amidst growing discs. We sketch our global approach in Section 4, and in
Section 5 we present efficient algorithms for the restricted and general case.
Experimental results are given in Section 6, and Section 7 concludes the paper.

2 Problem Definition

The problem is formally defined as follows. Given are n moving obstacles
O1, . . . , On which are discs in the plane. The centers of the discs (i.e. the
positions of the obstacles) at time t = 0 are given by the coordinates
p1, . . . , pn ∈ R

2, and the radii of the discs by r1, . . . , rn ∈ R
+. All of the

obstacles have a maximal velocity, given by v1, . . . , vn ∈ R
+. The robot is a

point (if it is a disc, it can be treated as a point when its radius is added
to the radii of the obstacles), for which a path should be found between a
start configuration s ∈ R

2 and a goal configuration g ∈ R
2. The robot has a

maximal velocity V ∈ R
+ which should be larger than each of the maximal

velocities of the obstacles, i.e. (∀i :: V > vi).
As we do not assume any knowledge of the velocities and directions of

motion of the moving obstacles, other than that they have a maximal velocity,
the region that is guaranteed to contain all the moving obstacles at some
point in time t is bounded by

⋃

i B(pi, ri + vit), where B(p, r) ⊂ R
2 is an

open disc centered at p with radius r. In other words, each of the moving
obstacles is conservatively modeled by a disc that grows over time with a rate
corresponding to its maximal velocity (see Fig. 1 for an example environment).

Definition 1. A point p ∈ R
2 is collision-free at time t ∈ R

+ if p 6∈
⋃

i B(pi, ri + vit).

The goal is to compute the shortest possible path π : [0, tg] → R
2 between s

and g (i.e. a minimal time path with minimal tg where π(0) = s and π(tg) = g)
that is collision-free with respect to the growing discs for all t ∈ [0, tg].

3 Properties of Shortest Paths

In this section we deduce some elementary properties of shortest paths amidst
growing discs. We first show that we are actually dealing with a three-
dimensional path planning problem: As the discs grow over time, we can

2 Note that the special case of discs with zero growth rate gives a two-dimensional
shortest path problem, which can be solved in O(n2 log n) time (see e.g. [4]).
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see the obstacles as cones in a three-dimensional space (see Fig. 2), where the
third dimension represents the time. Each obstacle Oi transforms into a cone
Ci, whose central axis is parallel to the time-axis of the coordinate frame, and
intersects the xy-plane at point pi. The maximal velocity vi determines the
opening angle of the cone, and together with the initial radius ri, it determines
the (negative) time-coordinate of the apex. The equation of cone Ci is given
by:

Ci : (x − pix)2 + (y − piy)2 = (vit + ri)
2. (1)

The goal configuration g is transformed into a line parallel to the time-
axis, where we want to arrive as soon as possible (i.e. for the lowest value of
t). In the three-dimensional space it is easier to reason about the properties
of shortest paths.

Fig. 2. The three-dimensional space of the same environment as Fig. 1.

3.1 Maximal Velocity

We will first show that a shortest path is always traversed at the maximal
velocity V , and hence a shortest path makes a constant angle arctan(1/V )
with the xy-plane.

Lemma 1. A point p ∈ R
2 that is collision-free at time t = t′, is collision-free

for all t :: 0 ≤ t ≤ t′.

Proof. If t1 ≤ t2, we know that
⋃

i B(pi, ri + vit1) ⊆
⋃

i B(pi, ri + vit2). Thus
if a point p is collision-free at time t2, i.e. p 6∈ ⋃

i B(pi, ri +vit2), it is certainly
not in

⋃

i B(pi, ri + vit1). Hence point p is collision-free at time t1 as well. �

Theorem 1. The velocity
‖(δx,δy)‖

δt
of a shortest path is constant and equal to

the maximal velocity V .
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Proof. Suppose π is a path to g, of which a sub-path has a velocity smaller
than V . Then this sub-path could have been traversed at maximal velocity,
so that points further along the path would be reached at an earlier time.
Lemma 1 proves that these points are then collision-free as well, so also g
could have been reached sooner, and hence π is not a shortest path. �

3.2 Straight-Line Segments and Spiral Segments

Next, we prove that that a shortest path can only consist of straight-line
motions, and motions that stay in contact with the growing discs. These latter
motions follow curves ‘winding’ around a disc while it grows. They lie on the
surface of a cone, when viewed in the three-dimensional space.

Theorem 2. A shortest path solely consists of straight-line segments, and seg-

ments on the boundary of a growing disc.

Proof. Theorem 1 implies that the time it takes to traverse a path is propor-
tional to its length. Hence, parts of the path in ‘open’ space can always be
shortcut by a straight-line segment. Only when the path stays in contact with
a growing disc, it is not possible to shortcut. �

We next show that in fact, as both the velocity of the path and the growth
rate of the discs are constant, the segments on the boundary of a disc are
supported by a logarithmic spiral.

Without loss of generality, we assume that the disc has radius 0 at t = 0,
that the disc is centered at the origin, and that the disc grows with velocity
1 (other discs can be transformed such that these conditions hold). Let the
velocity of the path be V . We express the equations of the path curve in polar
coordinates (r(t), θ(t)), parametrized by the time t. The radius r(t) of the
curve at time t is equal to the radius of the disc at time t, thus:

r(t) = t. (2)

The angle θ(t) is not trivially deduced, but we know that
√

x′(t)2 + y′(t)2 = V, (3)

as the velocity along the path is constantly equal to V . From this equation,
we deduce a closed form for θ(t):

{

x(t) = r(t) cos θ(t),

y(t) = r(t) sin θ(t)
}

,
{

x′(t) = r′(t) cos θ(t) − r(t)θ′(t) sin θ(t),

y′(t) = r′(t) sin θ(t) + r(t)θ′(t) cos θ(t)
}

,

x′(t)2 + y′(t)2 = r′(t)2 + r(t)2θ′(t)2 = 1 + t2θ′(t)2. (4)
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Combining Equations (4) and (3), and solving for θ(t) gives:

√

1 + t2θ′(t)2 = V,

1 + t2θ′(t)2 = V 2,

θ′(t) = ±
√

V 2 − 1

t
,

θ(t) = ±
√

V 2 − 1 log t + θ0. (5)

Equations (2) and (5) together define a curve which is well known as the
logarithmic spiral [11]. The ± indicates whether the spiral revolves counter-
clockwise (+), or clockwise (−) about the growing disc. The term θ0 gives the
starting angle of the spiral.

3.3 Path Smoothness

Theorem 3. A shortest path is C1-smooth.

Proof. Suppose path π is not C1-smooth and contains sharp turns. Then these
turns could be shortcut by a straight-line segment. Hence π is not a shortest
path. �

This theorem implies that in a (general) shortest path the straight-line
segments and spiral segments alternate each other, and that the straight-line
segments must be tangent to the supporting spirals of the spiral segments.
In terms of the three-dimensional space this means that the straight-line seg-
ments (which “connect” two spiral segments), are bitangent to the cones on
which the spirals lie.

3.4 Departure Curves

There are four ways in which a straight-line segment can be bitangent to a
pair of cones (say Ci and Cj): left-left, right-right, left-right and right-left. In
each of these cases, there is an infinite number of possible segments (whose
slope corresponds to the maximal velocity V ) that are tangent to both Ci

and Cj . However, the possible tangency points at the surface of Ci form a
continuous curve on that surface. We call such curves departure curves. They
play a major role in our algorithm to compute a shortest path.

Definition 2. For two cones Ci and Cj, the set DC(Ci, Cj) is defined as

the collection of points on the surface of Ci, for which the straight-line of

slope 1/V that is tangent to Ci in that point is also tangent to Cj . The

set DC(Ci, Cj) consists of four continuous curves, each associated with one

of the tangency cases. We call them departure curves. They are denoted

DCll(Ci, Cj), DClr(Ci, Cj), DCrl(Ci, Cj) and DCrr(Ci, Cj), respectively.
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The set DC(Ci, g) to the goal configuration g is defined similar, but then

the tangent line segment should go through the goal configuration g. In this

case the departure curves DCr(Ci, g) and DCl(Ci, g) are distinguished.

We now show how we can deduce equations for the departure curves on
the surface of a cone C. Again, without loss of generality, we assume that the
disc associated with the cone has radius 0 at t = 0, that the disc is centered
at the origin, and that the disc grows with velocity 1. Let the velocity of the
path be V . The surface of C can be parametrized by two variables, time T
and angle Θ:

C : (T, Θ) → {T cosΘ, T sin Θ, T } .

Let us consider the counterclockwise spirals about this cone. Each of them
is uniquely defined by the initial angle θ0 (see Equation (5)). Each point (T, Θ)
on the surface of the cone has a unique spiral that goes through that point.
This spiral can be found by solving θ(T ) = Θ for θ0:

θ0 = −
√

V 2 − 1 log T + Θ. (6)

Hence, the spiral though (T, Θ) is described in Euclidean coordinates as:

{

x(t) = t cos
(

√

V 2 − 1 log t −
√

V 2 − 1 log T + Θ
)

,

y(t) = t sin
(

√

V 2 − 1 log t −
√

V 2 − 1 log T + Θ
)}

.

If we walk along this spiral, we can depart for another cone if the straight-
line segment tangent to the spiral is tangent to another cone as well. The
straight-line segment ℓ tangent to the spiral at point (T, Θ) is represented by:

ℓ(t) =
{

x(T ) + (t − T )x′(T ), y(T ) + (t − T )y′(T )
}

= (7)

=
{

t cosΘ − (t − T )
√

V 2 − 1 sin Θ, t sin Θ + (t − T )
√

V 2 − 1 cosΘ
}

.

This segment must be tangent to another cone, say Ci with position pi, initial
radius ri and velocity vi, in order for point (T, Θ) to be on a departure curve
of DC(C, Ci). The surface of Ci is given by Equation (1). If we fill in line ℓ in
(1), by substituting x = ℓx(t) and y = ℓy(t), and solve for t, we get a solution
of the following form:

t1,2 = A(T, Θ) ±
√

D(T, Θ). (8)

Here, D(T, Θ) is the discriminant whose sign indicates whether or not line
ℓ intersects Ci. When D(T, Θ) = 0, ℓ is tangent to Ci, hence D(T, Θ) = 0
is an implicit equation for the set DCr(C, Ci). We can make this explicit
by solving D(T, Θ) = 0 for T . In Fig. 3 this function is plotted for various
values of vi (note that the function has a period of 2π). In each of these cases
we see two sine-like curves (for vi = 1, it is degenerate). They correspond
with DCrl(C, Ci) and DCrr(C, Ci), respectively. The other departure curves
DClr(C, Ci) and DCll(C, Ci) can be found when considering clockwise spirals.
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(a) (b) (c)

Fig. 3. Departure curves DCr(C, Ci) on the surface of C parametrized by angle
Θ and time T for different values of vi. (a) vi < 1. (b) vi = 1. (c) vi > 1. The
dashed curves are improper departure curves. The gray area, given by the inequality
(T cos Θ − pix)2 + (T sin Θ − piy)2 < (ri + viT )2, is the region on the surface of C

that is penetrated by Ci, i.e. these points are not collision-free.

Given a position (T, Θ) on the surface of cone C for which D(T, Θ) = 0,
the arrival time of the straight-line segment at cone Ci is given by A(T, Θ).
The departure time of the segment is given by T . For some points along the
departure curve A(T, Θ) is smaller than T . They correspond with bitangen-
cies in the negative direction, i.e. the arrival time on Ci is smaller than the
departure time at C. In the plots this is indicated by dashed curves. In the
remainder of this paper these improper curves are ignored when we refer to
departure curves.

We also have to take into account departure curves of DC(C, g) associated
with segments tangent to C and leading to the goal configuration g. In this
case, we have to solve the system of equations [ℓ(t) = g] for T , to get a closed
form for the departure curve.

4 A Naive Algorithm

With the notions introduced so far, we can devise a first, rather naive algo-
rithm to find a shortest path amidst growing discs from some start configu-
ration s to some goal configuration g. Our approach grows a tree of possible
shortest paths that is rooted in the start configuration at time t = 0. A leaf
is expanded if the length of its path from the start configuration is minimal
among all leafs of the tree. To this end, each leaf is maintained in a priority

queue, with a key value equal to its time coordinate (which equals the length
of its path from s). The priority queue is initialized with the initial motions
from the start configuration s that possibly belong to a shortest path. These
are straight-line segments with slope 1/V leading either directly to the goal
configuration, or to a tangency point on the surface of one of the cones. Some
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of these segments may intersect other cones, which would make them invalid,
so only the collision-free segments are considered. The endpoint of each valid
segment is put into the priority queue with a key corresponding to its t-value.

Now, the algorithm proceeds by handling the point with the lowest t-value
in the queue (the front element of the queue). This point is either the goal
configuration, in which case the shortest path has been found, or a point
on the surface of a cone. In this latter, more general case we proceed by
walking along a spiral about the cone. This spiral either runs into an obstacle
(another cone), in which case there is no valid continuation of the path, or it
encounters a departure curve on the surface of the cone. In this case there are
two outgoing branches: (1) continuing along the spiral on the surface of the
cone to find a next departure curve, and (2) departing for the other cone by
a straight-line segment. If this latter segment is collision-free, its endpoint is
inserted into the queue. Also for the first option an entry is enqueued.

This procedure is repeated until the goal configuration is popped from the
priority queue. In this case the shortest path has been found, and can be read
out if backpointers have been maintained during the algorithm. If the priority
queue becomes empty, or if the front element of the queue has a time-value for
which the goal configuration is not collision-free anymore (it is occupied by
one of the growing discs), no valid path exists. In Algorithm 1, the algorithm
is given in pseudocode.

Algorithm 1 ShortestPathNaive(s, g)

1: Initialize priority queue Q with endpoints of all valid outgoing segments from s.
2: while Q is not empty do

3: Pop the front element 〈q, t〉 from the queue.
4: if the goal configuration is not collision-free anymore at time t then

5: Path does not exist. Terminate.
6: else if q = g then

7: Shortest path found! Terminate.
8: else

9: q is on the surface of a cone, say Ci, so proceed along the spiral about Ci

until it runs into another cone, or encounters a departure curve.
10: if the spiral encounters a departure curve, say DC(Ci, Cj), then

11: 〈q′, t′〉 ← the intersection point of the spiral and the departure curve.
12: 〈q′′, t′′〉 ← arrival point of the bitangent segment on the surface of Cj .
13: Insert 〈q′, t′〉 into Q.
14: if segment 〈q′, t′〉, 〈q′′, t′′〉 is collision-free then

15: Insert 〈q′′, t′′〉 into Q.
16: Path does not exist.

In the above algorithm, we have to identify the spiral we are on (let us
assume that it is a counterclockwise spiral), given a point on the surface of
the cone (line 9). Let q be a point on the surface of some cone, say Ci, given
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in Euclidean coordinates (x, y, t). Then the corresponding coordinates (T, Θ)
on the surface of Ci are given by (T, Θ) = (t, arctan

y−piy

x−pix
).

The spiral on the surface of Ci going through (T, Θ) is given by θ0 as
computed in Equation (6). Equation (5) then gives a function for the angle
θ(t) along the spiral through (T, Θ). In line 10 of Algorithm 1, we wish to
know whether the spiral encounters any departure curves. To this end, we
should find the intersections of the spiral and the departure curves on the
surface of Ci. Recall that we can deduce an implicit equation D(T, Θ) = 0 for
the departure curves of any pair of cones (see Equation (8)). The intersections
are thus found by solving D(t, θ(t)) = 0 for t.

When we have found an intersection for some value t = T of the spiral and
a departure curve of, say, DC(Ci, Cj), we wish to know what kind of departure
curve we have encountered. The arrival time at cone Cj when departed from
time T is A(T, θ(T )) (see Equation (8)). If this arrival time is smaller than
T , the intersection can be ignored. If it is larger, we like to know whether
the tangent straight-line segment arrives on the left side of Cj (and should
be succeeded by a clockwise spiral on Cj), or on the right side of Cj (and
should be succeeded by a counterclockwise spiral). This is determined by the
derivative of D(t, θ(t)) to t. If this derivative is negative at point T , we have
arrived on the left side. If it is positive, we have arrived on the right side. The
exact arrival location on the surface of cone Cj is given by ℓ(A(T, θ(T )) (see
Equation (7)). From this information we can deduce the parameters defining
the spiral on Cj on which we have arrived.

5 An Efficient Algorithm

The algorithm described above will indeed find a shortest path to the goal
within a finite amount of time. However, in order to have a bound on the
running time we must define nodes that can provably be visited only once
in a shortest path, such that we can do relaxation on them as in Dijkstra’s
algorithm [7]. We will show that this is easy to achieve in the restricted case
where all discs have equal growth rates, and present an O(n3 log n) algorithm
(n being the number of discs). For the general case this problem is left open,
but we will present an algorithm that is very fast in practice, by pruning large
parts of the search tree.

5.1 Discs with Equal Growth Rates

If a point q = (T, Θ) on the surface of a cone has been visited during the search
for a shortest path to the goal, all points on the cone that are reachable from q
by following some collision-free path with a velocity less than the maximal ve-

locity V (i.e., ‖(δx,δy)‖
δt

< V ), can never lie on a shortest path from the start to
the goal (this follows directly from Theorem 1). These points are contained in
the wedge formed by the clockwise and counterclockwise spiral going through q
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Fig. 4. The region (light grey)
on the surface of a cone that is
reachable from point q by paths
with ‖(δx,δy)‖

δt
≤ V . The dark

grey area is an obstacle.

(see Fig. 4; a spiral appears as an exponential
function in the ΘT -coordinate frame), as we

know that on the spirals ‖(δx,δy)‖
δt

= V . We
call this region the wedge region of q.

Let us consider the arrangement [1] on the
surface of a cone containing all (proper) de-
parture curves and all obstacle regions (other
cones penetrating the surface) on that cone
(see Fig. 5 for an impression). Note that the de-
parture curves may be subdivided into a num-
ber of collision-free intervals by the obstacle
regions. In case all discs have the same growth
rate, say vi = v < V for all i, these intervals
satisfy an interesting property (see Fig. 3(b)):
let (T, Θ) be a point on some departure curve
interval, then all points (T ′, Θ′) on the same
interval for which T ′ > T are within the wedge
region of (T, Θ). To prove this, we must show

that for the departure curves hold that ‖(δx,δy)‖
δt

≤ V . As the proof is rather
technical, we omit it here.

This means that these departure curve intervals can serve as nodes in our
Dijkstra-algorithm. Only the path arriving earliest in an interval can con-
tribute to a shortest path. Paths arriving later in the interval cannot be part
of the shortest path, because the path arriving earliest in the interval can be
extended with a traversal along the interval to end up at the same position
(and time) as the path arriving later in the interval.

Each node (an interval) has two outgoing edges. Let the interval be a
segment of a departure curve of DC(Ci, Cj), then the first edge is a spiral
segment to the next departure curve on the surface of Ci, and the second
edge consists of a bitangent straight-line segment and a spiral segment and
arrives in the first departure curve encountered on the surface of Cj . For the

Fig. 5. An impression of an arrangement
on the surface of the cone. The thick lines
are the departure curves, of which one
has a shadow interval (dashed). The thin
dashed lines are spiral segments that de-
limit trapezoidal regions that have the
same next departure curve or collision
(only the counter-clockwise spirals are
shown). The gray area depicts an obstacle
area of another cone penetrating the sur-
face, and cutting several departure curves
into two intervals.
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first edge, which stays on the cone, we have to determine the next departure
curve that is encountered if we proceed by moving along the spiral about the
cone. This can be done efficiently using the arrangement, if we have computed
its trapezoidal map [1], where the sides of the trapezoids are spiral segments.

For the second edge, which traverses to another cone, we have to determine
what the first departure curve is we will encounter there. This can be done
efficiently using the arrangement we have computed on that cone. Using a
point-location query, we can determine in what cell of the arrangement the
straight-line segment has arrived, and using the trapezoidal map we know
what the first departure curve is we will encounter if we proceed from there.

Finally, we must ascertain that each edge is collision-free with respect to
the other cones. Spiral segments may collide with other cones if these pene-
trate the spiral’s cone surface. Since obstacle areas are incorporated into the
arrangement, such collisions are easily detected. Straight-line segments may
collide with any cone, so for each departure curve and each cone, we calcu-
late the shadow interval this cone casts on the departure curve, in which a
departure will result in collision. These shadow intervals are stored in the
arrangement as well. In Fig. 5, an impression is given of how such an arrange-
ment might look.

Theorem 4. The algorithm to compute a shortest path amidst n growing discs

with equal growth rates runs in O(n3 log n) time.

Proof. For each pair of cones there are O(1) departure curves. Since there
are O(n2) pairs of cones, there are O(n2) departure curves in total. Each
of the departure curves can be segmented into at most O(n) intervals, as
there are at most O(n) cones intersecting the departure curve (each cone can
split the departure curve into at most two segments). Hence, there are O(n3)
departure curve intervals. Each departure curve interval has O(1) outgoing
edges, making a total of O(n3) edges.

The complexity of Dijkstra’s algorithm is known to be O(N log N + E)
where N is the number of nodes, and E the number of edges. Each edge
requires some additional work. Firstly, we have to find the departure curve
interval in which it will arrive, by doing a point-location query in the trape-
zoidal map of one of the arrangements. This takes O(log n) time. Further, we
must determine whether an edge is collision-free. Using the shadow intervals
stored at the departure curves, this can be done in O(log n) time as well. Thus,
as both N and E are O(n3), Dijkstra’s algorithm will run in O(n3 log n) time
in total.

Computing the arrangements and their trapezoidal maps takes O(n2) time
per cone, as there are O(n) departure curves on each cone, and O(n) intersec-
tion areas of other cones. As there are O(n) cones, this step takes O(n3) time
in total. All the shadow intervals can be computed in O(n3) time as well, as
there are O(n2) departure curves and O(n) cones.

Overall, we can conclude that our algorithm runs in O(n3 log n) time. �
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5.2 General Case: Discs Have Different Growth Rates

In the general case, where the discs may have different growth rates, the
problem becomes much harder. We can follow the same approach as above,
but let us look at what happens to the slope of the departure curves in this
case (see Figs. 3(a) and (c)). In the case where the arrival cone has a slower

growth rate, the departure curves (provably) satisfy ‖(δx,δy)‖
δt

≤ V (see Fig.
3(a)). However, in the case where the arrival cone has a faster growth rate
(Fig. 3(c)), it is clear that this is not the case. The departure curve DCrr

is horizontal at some point, meaning that ‖(δx,δy)‖
δt

= ∞. Hence, we cannot
define intervals on these departure curves that serve as nodes in the search
process.

We can still use Algorithm 1 for the general case, but a problem is that
this algorithm considers many branches in the search tree of which we know
that they will not lead to a shortest path. For instance, it lets the spirals wind
around the cones forever, thereby encountering many departure curves, which
in turn generate other spirals on other cones. Hence, it lets the size of the
search tree blow up quickly.

In order to have an algorithm that runs fast in practice, we need to prune
these useless branches of the search tree. The key observation we use for this
is that a point (T, Θ) on the surface of cone Ci cannot be part of shortest
path if we have visited (T ′, Θ) already (where T ′ < T ) and the vertical line
segment on the surface of the cone between (T ′, Θ) and (T, Θ) is collision-
free. This is because (T, Θ) is then in the wedge region of (T ′, Θ) (note that

the velocity ‖(δx,δy)‖
δt

along the vertical line segment equals vi < V ). Hence a
spiral encountering (T, Θ) need not be expanded any further.

To implement this practically, we only do this test for a constant number of
Θ’s. To this end, we augment Algorithm 1 by choosing a small constant ε, and
drawing 2π

ε
evenly distributed vertical lines on the surface of each cone. These

vertical lines are segmented into collision-free intervals by obstacle regions on
the surface. Now, these intervals will serve as nodes in our practical algorithm
on which we perform relaxation.

This means that if we walk along a spiral on the surface of a cone, and the
spiral crosses a vertical line, we have to check whether this spiral is the first
to arrive in the particular interval. If not, this spiral can never be part of a
shortest path, for the same reasons as above. Thus, this branch of the search
tree can be pruned.

The smaller ε is chosen, the sooner the spirals can be pruned, and hence
the smaller the size of the search tree will be. On the other hand, a smaller
ε also causes the algorithm to perform more (costly) relaxation checks, with
diminishing returns. So ε should not be chosen too small. Even though we are
unable to bound the running time of this algorithm in terms of the number
of discs (n) or the value of ε, it turns out to be very fast in practice, as we
will see next.
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5.3 Implementation Details

We created a fast implementation of Algorithm 1, augmented with the pruning
heuristic presented above. We did not create an arrangement of all vertical
lines and all obstacle regions on each cone. This would take too much time.
Instead, we maintain for each vertical line m one time-value at which it was
last visited, say tm. Given the order in which the points are considered in the
priority queue, we know that when a point q is popped from the queue, it has
a higher time value than any point previously considered. So, if point q lies on
vertical line m, its time value qt is larger than the time-value tm of the point
previously considered on that line. If the line segment between tm and qt on
m is collision-free, q is in a previously visited interval, and hence this point is
not expanded. However, if the vertical line segment between these two points
is not collision-free, point q is the first to arrive in a new interval, and its
outgoing edges must be inserted into the priority queue. From this moment
on, qt is set as the time value attached to the vertical line m, as we know that
no point below qt will be considered anymore.

Outgoing edges of a point q on a vertical line segment are a spiral segment
to the next vertical line, and –in case this spiral segment crosses one or more
departure curves– segments to vertical lines on other cones. In our implemen-
tation, the intersection between spiral segments and departure curves is found
using a combination of two approximate root-finding algorithms [3].

Collision-checking straight-line segments is done by testing them for inter-
sections with all cones, except the ones they are tangent to. We approximate
a spiral segment between two consecutive vertical lines by one or more small
straight-line segments, and collision-check them in the same way (in our im-
plementation, we use a single straight-line segment, as the radial distance ε
between two consecutive vertical lines is small).

Finally, the Dijkstra paradigm was replaced by an equally suited A*-
method [7], that is faster in practice as it focusses the search to the goal.
It adds a lower bound estimate of the distance to the goal to the key-value
of each point in the priority queue. In our implementation, the lower bound
estimate is simply the Euclidean distance divided by the maximal velocity.

6 Experimental Results

We created an interactive application for planning paths amidst growing
discs. The properties of the growing discs (position, size, growth rate) can
be changed by the user, and on-the-fly a new path is computed. From this
application we report results. Experiments were run on a Pentium IV 3.0GHz
with 1 GByte of memory. The value of ε was optimized and fixed at 2π

40 .
We report the running times of the algorithm for a varying number of discs.

As the running time of the algorithm does not only depend on the number of
obstacles, but also on the exact configuration of the discs, and how well the A*
method manages to focus the search, etc., we averaged the running times over
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Fig. 6. A shortest path amidst 10 growing discs. A small dot indicates the position
along the path at t = 0, 1, . . . , 7. The pictures were generated by our application.
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Fig. 7. Results of our experiments.

various positions of the start
configuration for each experi-
ment. In Fig. 7 the results are
given.

What first of all can be seen
from the results is that our im-
plementation is very fast. Even
for 15 growing discs, the run-
ning time is only 0.0042 sec-
onds, well within real-time re-
quirements. We did not show re-
sults for more than 15 discs, as
it appeared to be difficult to find
sensible setups with this many discs that still contain a valid path to the goal.
From the figure it seems that the running time is more or less quadratically
related to the number of discs. This is what we expected based on the im-
plementation. In Fig. 6, snapshots are shown of a shortest path amidst 10
growing discs.

7 Conclusion

In this paper we presented an algorithm for computing shortest paths (mini-
mum time paths) amidst discs that grow over time. A growing disc can model
the region that is guaranteed to contain a moving obstacle of which the max-
imal velocity is given. Hence, using our algorithm, paths can be found that
are guaranteed to be collision-free in the future, regardless of the behavior of
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the moving obstacles. As the regions grow fast over time, a new path should
be planned from time to time –based on newly acquired sensor data– to gen-
erate paths with more appealing global characteristics. Our implementation
shows that such paths can be generated very quickly. A great advantage over
other methods is that this replanning can be done safely. The old path that
is still used during replanning is guaranteed to be collision-free. A require-
ment though, is that the robot has a higher maximal velocity than any of the
moving obstacles.

A drawback of the method we presented is that a path to the goal often
does not exist. This occurs when the goal is covered by a growing disc before
it can be reached. A solution to this problem would be to find the path that
comes closest to the goal. It seems that this can easily be incorporated into our
algorithm. Other possible extensions include allowing obstacles with different
shapes (other than discs), and fixed obstacles in the environment, but they
are still subject of ongoing research.
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