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Abstract: We introduce the notion of low-discrepancy curves and use it to solve the problem
of optimally covering space. In doing so, we extend the notion of low-discrepancy sequences
in such a way that sufficiently smooth curves with low discrepancy properties can be defined
and generated. Based on a class of curves that cover the unit square in an efficient way, we
define induced low discrepancy curves in Riemannian spaces. This allows us to efficiently
cover an arbitrarily chosen abstract surface that admits a diffeomorphism to the unit square. We
demonstrate the application of these ideas by presenting concrete examples of low-discrepancy
curves on some surfaces that are of interest in robotics.

1 Introduction

Uniform coverage of space is an important requirement in several applications in
robotics and allied areas involving motion planning. As noted in a recent survey arti-
cle [1], coverage path planning is critical in applications such as robotic de-mining,
spray painting, machine milling and non-destructive evaluation of complex industrial
parts, to name just a few.

In a more general setting, uniform coverage is a natural requirement in prob-
lems involving search in abstract spaces. Common abstract spaces of interest include
configuration spaces of mechanical systems, parameter spaces such as the space of
coefficients of a rational transfer function or a probability distribution, etc. Often,
one is interested in generating continuous curves that cover such spaces. This is a
natural requirement for physical robots that move in a continuous world. However,
such a need also arises in several other settings involving, e.g., continuous adaptation
and learning in a dynamical system.

Motivated by such application needs, we are investigating the problem of gener-
ating low-discrepancy curves that provide an assurance of uniform coverage of space
in an incremental setting, such that the length of the search path correlates well with
the quality of coverage.
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Our approach to solving this problem involves two steps. First, we generate
curves that uniformly and incrementally cover a model space, such as the unit square.
We generalize the well established theory of low-discrepancy sequences in such a
way that sufficiently smooth curves with low discrepancy properties can be defined
and generated. In addition to the types of curves that we present in this paper, one
may also tap into a sizeable literature on ergodic theory [2] to construct alternate
curves with different coverage properties. Based on such curves, induced low dis-
crepancy curves in Riemannian spaces may be constructed. This is achieved through
the definition and determination of an area and fairness-preserving diffeomorphism.
Given a suitable parametrization of the space to be covered, this procedure yields a
curve that can cover it uniformly, optimally in a low-discrepancy sense, and incre-
mentally. This second step ensures that our algorithm is applicable in a wide variety
of applications, requiring only that we have a description of the abstract space in the
form of a suitable Riemannian metric.

Low discrepancy point sets and sequences [3] have a successful history within
robotics. They have been successfully used in sampling based motion planning and
area coverage applications. This work has been covered well in the past proceed-
ings of the Workshop on the Algorithmic Foundations of Robotics, so we will not
extensively survey it here. [4] contains an excellent discussion on the use of low-
discrepancy sampling techniques in motion planning. In more recent work, [5], [6],
techniques have been proposed for generating sequences in an incremental fashion,
which is often a very important requirement. However, on the one hand, the gen-
eration of these sequences is based on a computationally expensive search for an
optimal ordering [5] while on the other hand, even though some of these computa-
tional efficiency problems may be addressed by better algorithm design [6], we often
seek the stronger result of a continuous curve in an abstract space.

The notion of using a diffeomorphism to induce a low-discrepancy curve in the
abstract space bears a methodological resemblance to some prior work in robotics,
e.g., [7], where sphere worlds are mapped to arbitrary convex spaces. However, we
are not aware of prior attempts to define diffeomorphisms that address fairness of
space coverage. This is crucial for our work.

The plan of the rest of the paper is as follows. In section 2, we begin with an
overview of low-discrepancy sets and sequences. In section 3 we generalize the idea
of low-discrepancy sequences to low-discrepancy curves. We show that such curves
do exist. Section 4 deals with low-discrepancy curves on abstract surfaces and in
Riemannian spaces. These curves can be derived from low-discrepancy curves in
unit cubes. In Section 5, we apply the developed methods to the problem of scanning
various surfaces. In a certain sense to be defined, we will show that the proposed
scanning procedures are optimal. Finally, we conclude with some comments regard-
ing future directions and open questions.
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2 On the Notion of Low-Discrepancy Point Sets and Sequences

The definition of discrepancy of a finite set X was introduced to quantify the homo-
geneity of finite-dimensional point sets [8]:

D(X) = supR|m(R)− p(R)| (1)

In equation (1), R runs over all d-dimensional rectangles [0, r]d with 0 ≤ r ≤ 1,
m(R) stands for the Lebesgue measure of R and p(R) is the ratio of the number of
points of X in R and the number of all points of X . The lower the discrepancy the
better or more homogeneous is the distribution of the point set. The discrepancy of
an infinite sequence X = {x1, x2, x3, ..., xn, ...} is a new sequence of positive real
numbers D(Xn), where Xn stands for the first n elements of X .

There exists a point set of given length that realizes the lowest discrepancy. It
is known (the Roth bound [9]) that the following inequality holds true for all finite
sequences Xn of length n in the d-dimensional unit cube.

D(Xn) ≥ Bd
(log n)

d−1
2

n
(2)

Bd depends only on d. Except for the trivial case d = 1, it is unknown whether
the theoretical lower bound is attainable. Many schemes to build finite sequences Xn

of length n do exist that deliver a slightly worse limit,

D(Xn) ≥ Bd
(log n)d

n
(3)

There are also infinite sequences X with the above lower bound, equation (3),
for all subsequences consisting of the first n elements. The latter result leads to the
definition of low-discrepancy infinite sequences X . The inequality (3) must be valid
for all sub-sequences of the first n elements, where Bd is an appropriate constant.

Many low-discrepancy sequences in d-dimensional unit cubes can be constructed
as combinations of 1-dimensional low-discrepancy sequences. Popular low-discrepancy
sequences are based on schemes introduced by Corput [10], Halton [11], Sobol [12],
and Niederreiter [8].

One of the primary motivations for investigations into these sequences arises
from high-dimensional function approximation and Monte-Carlo integration. In this
setting, there is a well-known [8] relationship between integrals I , approximations
In, and an infinite sequence X = {x1, x2, ..., xn, ...} in d-dimensions, known as the
Koksma-Hlawka inequality.

|I(f)− In(f)| ≤ V (f)D(Xn) (4)

I(f) =
∫ 1

0

f(x)dx (5)

In(f) =
1
n

n∑
i=1

f(xi) (6)
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where V (f) is the variation of the function in the sense of Hardy and Krause.

3 Low-Discrepancy Curves in the Unit Square

One of the earliest known quasi-random sequences is the Richtmyer sequence
[13], [14], which illustrates a simple but general result in ergodic dynamics [15],
[16]. Let xn = {nα} (i.e., [nα] mod 1) and X = {x1, x2, ..., xn, ...}, where
α = (α1, ..., αd) is irrational and α1, ..., αd are linearly independent over the ra-
tional numbers. Then for almost all α in <d and for all positive ε, with exception of
a set of points that has zero Lebesgue measure,

D(Xn) = O(
logd+1+ε n

n
) (7)

The Richtmeyer sequence is probably the only quasi-random sequence based
on a linear congruential algorithm [17]. This is useful because it suggests a natural
extension to the generation of curves. We will now provide such an extension.

Let C be a given piecewise smooth and finite curve in the unit square S. Further-
more, let R be an arbitrary aligned rectangle in S with lower left corner (0, 0). Let
L be the length of the given curve in S and l be the length of the sub-curve of C that
lies in R. In case of well-distributed curves, the ratio l/L should represent the area
A(R) of R reasonably well. This gives rise to the following definition of discrepancy
of a given finite piecewise smooth curve in S:

D(C) = sup
R
| l
L
− A(R)

A(S)
| (8)

It would be desirable to construct curves C with the property that the discrepancy
is always small. More precisely, we will call an infinite and piecewise sufficiently
smooth curve C : <+ 7→ S, in natural parametrization, a low-discrepancy curve if
for all positive arc lengths L the curves CL = C/[0, L] satisfy the inequalities (the
function F must be defined appropriately):

D(CL) ≤ F (L) (9)

In fact, a piecewise smooth curve in natural parametrization generates sequences
{x1, x2, ..., xn, ...} by setting xn = Cn(n∆) where ∆ is a fixed positive num-
ber. The inequality 9 lets us hope for a similar formula for the derived sequence
{x1, x2, ..., xn, ...}. Because of equation 7, a realistic goal is:

F (L) = O(
log3+ε L

L
), d = 2 (10)

We have to show that this goal is attainable.
To this end, for α = (α1, α2) , let CA(α) be the piecewise linear curve (tα1

mod 1, tα2 mod 1) = ({tα1}, {tα2}) where t is in <+.
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In fact, we can define three classes of curves in the unit square, as shown in figure
1. For the simplest type of curves, let us call this class CA, the right-left and top-
bottom edges are identified so that the curve jumps from one edge to the other upon
hitting it. In this scheme, all curves are parallel and continue indefinitely when the
square tiles the plane. In the second type of curves, class CB, we introduce reflections
at the top and bottom edges but preserve the same identification between right and
left edges. The third type of curves, class CC , involves reflections on all edges. The
latter curve is continuous.

Fig. 1. Various low-discrepancy curves for the unit square: CA, CB, CC from left to right.

Theorem 1. For almost all numbers α in <2, CA(α) is a low-discrepancy curve in
the sense of equations 9 and 10.

Proof.
In order to prove this statement, we will establish that the ratio of the length of a
curve segment to the total length is commensurate with the corresponding ratio of
the area of an axis-aligned rectangle to the unit square that contains it, as suggested
in equation 8.

Without loss of generality, we assume α1, α2 > 0. CA(α) intersects the axes
at (x = 0, yn = {nα2

α1
}) and (xn = {nα1

α2
}, y = 0), where n is an arbitrary natural

number. For almost all α1, α2 all three of the quantities (α1, α2), α1
α2

and α2
α1

generate
low-discrepancy sequences in the sense of equation 7, in<2,< and< respectively. In
other words, the aforementioned sequences xn, yn form low-discrepancy sequences
in [0, 1].

Now, for the class of curves CA, all curve segments between points of intersec-
tion with the edges of the square are parallel to each other. So, by reasoning about the
distribution of these points of intersection, we may arrive at conclusions about the
distribution of the curves themselves. With this in mind, we will define the average
curve length, i.e., A(R), in the form of integrals.

Let tanφ = α2
α1

and [0, a] × [0, b] be a rectangle with 0 < a, b < 1. Depending
on the relative values of (α1, α2), a, b the integrals take on specific forms. We will
explain the case when b

a ≤ tanφ, b < 1 − tanφ (see Figure 2) in some detail, the
other cases being similar.

We divide the unit square into three parts, as shown in figure 2. Then, I1, I2

and I3 are real numbers that represent the average length that the (α1, α2) lines
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Fig. 2. Definition of the integrals I1, I2 and I3

corresponding to these regions have in common with the rectangle [0, a] × [0, b].
Asymptotically, as the curve length L → ∞, these quantities may be represented as
follows (based on simple geometric considerations),

I1 =
∫ a− b

tan φ

0

b

sinφ
dx +

∫ a

a− b
tan φ

a− x

cos φ
dx =

ab

sinφ
− b2 cos φ

2 sin2 φ
(11)

I2 =
∫ b

0

b− y

sinφ
dy =

b2

2 sinφ
(12)

I3 = 0 (13)
(14)

I1 sinφ + (I2 + I3) cos φ = ab (15)

The final term stands for the average length that (α1, α2) lines in [0, 1] × [0, 1]
with slope tanφ have in common with the rectangle [0, a]× [0, b]. As expected, it is
exactly the area of the rectangle.

In practice, with a finite length curve, what is the discrepancy? We can estimate
this using the Koksma-Hlawka inequality 4. For instance, I1 is approximated using
finite length curve segments of the form,

l1(xi) =


b

sinφ
: 0 ≤ xi ≤ a− b

tanφ
a− xi

cos φ
: a− b

tanφ
≤ xi ≤ a

0 : a ≤ xi ≤ 1

Using a finite number, n, of such segments, we have the discrepancy as,
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|I1 −
n∑

i=1

l1(xi)| = O(
log2+ε n

n
) (16)

where xi = { iα1
α2
}

The sum stands for the length of that part of the given curve that lies in
[0, a] × [0, b]. The exact same argument may be made for the integrals I2 and I3.
This means that a finitely generated curve segment of type CA also has a very low
discrepancy. Moreover, note that we are reasoning about a 1-dimensional sequence
of points of intersection. So, the constant 3 (for d = 2) in equation 10 is now replaced
with 2 (d = 1). �

We can now develop two variations of Theorem 1.

Theorem 2. For almost all numbers α in<2, CB(α) and CC(α) are low-discrepancy
curves in the sense of equations 9 and 10.

Proof.
We begin with a remark. One can show that Theorem 1 is still valid when in the defi-
nition of low-discrepancy curves a much broader class of rectangles R is considered,
i.e., rectangles where we replace [0, a] × [0, b] with the more generic [c, a] × [d, b].
We refer the reader to [3] for several related proofs and expanded discussion on such
ideas.

Curves of type B:
Such a curve can be translated into an equivalent version acting in [0, 1] × [0, 2], by
simply mirroring the square. To this end, reflections at the upper edge (see Figure
1) are ignored. What results is an equivalent scheme as type A in [0, 1] × [0, 2]. For
almost all choices of α, the resulting curve in [0, 1] × [0, 2] is low-discrepancy. The
relation between the original space and the new one is straightforward. The original
curve goes through a rectangle R = [0, a]× [0, b] if and only if the derived curve in
[0, 1]× [0, 2] goes through [0, a]× [0, b] or through [0, a]× [2− b, 2] (see the remark
at the beginning of this proof). The latter implies that CB(α) satisfies equations 9
and 10.

Curves of type C:
We essentially repeat the arguments from type B. For almost all α, curves of type
B in [0, 2] × [0, 1] are low-discrepancy. Such curves can be generated when reflec-
tions at the right edge are ignored. The mirrored version of this curve goes through
a rectangle R = [0, a] × [0, b] if and only if the original curve in [0, 2] × [0, 1] goes
through [0, a] × [0, b] or [2 − a, 2] × [0, b] (see the remark at the beginning of this
proof). The latter implies that CC(α) satisfies 9 and 10. �

Curves CC(α) can be regarded as first examples of continuous trajectories in
a unit square that offer low-discrepancy behavior. In real area coverage scenarios
they are highly efficient compared to alternate techniques, as we will demonstrate in
section 5.

Finally, these results can be generalized to higher dimensions, using the same
style of argument. We state this theorem without proof.
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Theorem 3. For almost all numbers α in <d, CA(α), CB(α) and CC(α) are low-
discrepancy curves in the generalized sense of equations 9 and 10 in d-dimensional
unit cubes.

In practice, the question arises as to how these curves can be realized on digital
computers. For this purpose, it is quite reasonable to assume that we have the ability
to generate rational numbers of user-specified arbitrary precision. In this case, the
error due to the rational approximation of α in theorem 1, 2 and 3 is correspondingly
small so that finite lengths of the resulting curves generate discrepancies that are very
low.

Theorem 4. If {nα} generates a low-discrepancy sequence, for some irrational
number α, then ∃N � 1 such that {np

q }, n = 1, . . . , N , also generates a low-
discrepancy sequence, where p, q ∈ ℵ.

Proof.
The Hurwitz theorem in number theory [18] states that there are infinitely many p

q

with the property |α− p
q | <

1
q2 .

Given any irrational number, it is possible to find a sufficiently large q ∈ ℵ such
that the error of the rational approximation is small. Let q1 be such a number, with
q1 > N � 1. Then,

|n(α− p1

q1
)| < q1.

1
q2
1

=
1
q1

<
1
N

(17)

Now, assume that {(nα) mod 1} generates a low-discrepancy point set, of dis-
crepancy D(α) for n = 1, . . . , N . When α is irrational, (nα) mod 1 never passes
through the vertices of the unit square. Then, there always exists a neighborhood
where {(nx) mod 1}, n = 1, . . . , N , is a continuous function of x. Correspond-
ingly, this implies that D(x) is a continuous function of x in this neighborhood.

By selecting suitable p1, q1 that approximate α well, to within ε = 1
q1

, we arrive
at the bound, |D(x)−D(α)| < δ, where δ is a suitably small constant. This implies
that a curve constructed using these sequences, according to the procedure shown in
theorem 1, and using rational approximations to α, is still low-discrepancy. �

4 Abstract Surfaces and Riemannian Spaces

In many common applications, we deal with spaces that are more complex than the
unit square. Our constructions based on the unit square may be extended to more
general spaces through the use of Riemannian geometry [19], [20]. In essence, Rie-
mannian geometry allows us to deal with a space whose metric properties vary from
point to point. This means that we can efficiently talk about the warping of a model
space into a desired space, i.e., a manifold, in a principled way through the notion of
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metrics, line, area and volume elements, etc. Our approach in this paper will be to
define this warping such that the low-discrepancy properties are preserved.

Given an abstract surface S with a Riemannian metric defined for (u, v) in [0, 1]2,

ds2 = E(u, v)du2 + F (u, v)dudv + G(u, v)dv2 (18)

where E(u, v), F (u, v), G(u, v) are differentiable functions in u and v and EG−
F 2 is positive. The area element dA is defined by,

dA =
√

E(u, v)G(u, v)− F 2(u, v)du ∧ dv (19)

The function,

Ψ(u, v) =
√

E(u, v)G(u, v)− F 2(u, v) (20)

is nonnegative in [0, 1]2 and Ψ2(u, v) is differentiable.
Let α = (α1, α2) be a given irrational vector (direction) in <2. According to the

definitions 18 and 19, line and area elements of S for a specific direction (du, dv) =
(α1du, α2du) (i.e., with dv = α2

α1
du) satisfy,

ds

du
=

√
E(u, v)α2

1 + F (u, v)α1α2 + G(u, v)α2
2 (21)

dA

du2
=

√
E(u, v)G(u, v)− F 2(u, v)α1α2 (22)

From this, we define the quantity Q which describes our notion of fairness,

Q =
ds
du
dA
du2

=

√
E(u, v)α2

1 + F (u, v)α1α2 + G(u, v)α2
2√

E(u, v)G(u, v)− F 2(u, v)α1α2

(23)

Definition 1
A piecewise smooth curve C : <+ 7→ S lying on an abstract surface S is called a
low-discrepancy curve based on a vector α = (α1, α2), iff

1. C is S-filling, i.e. C comes arbitrarily close to any point of S.
2. There is a parametrization of S where Q in equation 23 is constant for all (u, v).
3. In any regular point of C, the tangent vector is parallel to α = (α1, α2).

The following algorithm is based on Definition 1.

Algorithm 1

1. Find a parametrization of S that satisfies conditions 2 and 3 in Definition 1. See
also Remark 1 below.

2. Generate a curve in S based on the image of a low-discrepancy curve in the unit
square according to Theorem 2.
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Remark 1: The parametrization in step 2 is not unique. In all examples an orig-
inally given natural parametrization is modified using replacements u 7→ h(u) or
v 7→ h(v) where h is a smooth diffeomorphism.

An abstract d-dimensional surface is defined by,

ds2 =
d∑

i,j=1

gij(u1, u2, ..., ud)dui
2duj

2 (24)

where the matrix consisting of gij : [0, d]d 7→ < is always symmetric, differentiable,
and positive semi-definite. An embedding of an abstract space as in equation 24 in
an m-dimensional Euclidean space is a diffeomorphism f of the hypercube [0, 1]d

with f1(u1, u2, ..., ud), f2(u1, u2, ..., ud), ..., fm(u1, u2, ..., ud) : <d 7→ <m where
the Riemannian metric of this embedding is described by equation 24. Usually, this
definition is too restrictive. Instead, local diffeomorphisms, i.e., coordinate patches,
should be used where these patches cover the whole space under consideration.

Let α = (α1, α2, ..., αd) be a given vector (direction) in <d. According to equa-
tion 24, the line and volume/content elements for a specific direction (du1, du2, ..., dud) =
(α1du, α2du, ..., αddu) are:

ds

du
=

√√√√ d∑
i,j=1

gij(u1, u2, ..., ud)αiαj (25)

dV

dun
=

√
det(gij(u1, u2, ..., ud))α1α2...αd (26)

From this,

Q =
ds
du
dV
dun

=

√∑d
i,j=1 gij(u1, u2, ..., ud)αiαj√

det(gij(u1, u2, ..., ud))α1α2...αd

(27)

Definition 2
A piecewise smooth curve C : <+ 7→ S in the given Riemannian space S is called
low-discrepancy curve based on a vector direction α = (α1, α2, ..., αd) iff

1. C is S-filling, i.e. C comes arbitrarily close to any point of S.
2. There is a parametrization of S where Q in equation 27 is constant for all

(u1, u2, ..., ud).
3. In any regular point of C, the tangent vector is parallel to α = (α1, α2, ..., αd).

5 Examples of the Coverage of Various Spaces

In this section we will demonstrate the use of the proposed technique to cover var-
ious geometrical surfaces. These examples are chosen to correspond to shapes and
surfaces that are commonly encountered in robotics. We will present visualizations
in the Euclidean space. However, it should be clear that these same results apply to
any equivalent space, in whatever domain or context, with the specified geometry.
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5.1 Covering the surface of the unit cube

Consider the surface of a unit cube. This is the most natural generalization of the
unit square in section 3. Figure 3 depicts an ”opened out” version in the plane of
the paper, a transformed version of the which can be used to tile the plane and a
low-discrepancy curve drawn on this tiling.

a b c

Fig. 3. Tiling of the plane and relation to the surface of the unit cube. Part a depicts the faces
of an opened out cube (imagine a typical packing box). Part b depicts an equivalent version,
rearranged in such a way that it is easier to tile the plane. Part c shows the low-discrepancy
curve traversing the tiled and flattened cubes. The key point to note is that whenever two edges
of a face in part c touch, they will also touch in the 3-dimensional cube. The depicted curve is
a prescription of the sequence of faces, and points on that face, to visit.

5.2 Covering the annulus

Consider an annulus, i.e., a ring, that has a standard parametrization given by
x(u, v) = (u cos v, u sin v), where 0 ≤ u0 ≤ u ≤ u1 and 0 ≤ v ≤ 2π.

Let us consider a diffeomorphism such that u 7→ g(u) and v 7→ v. Then the ring
can be re-parameterized by x(u, v) = (g(u) cos v, g(u) sin v). Now, we can apply
the method developed earlier. Let g be sufficiently smooth, where g maps [u0, u1]
onto [u0, u1]. Then, according to our proposed method, g(u) must satisfy an ordinary
differential equation (for α1, α2 > 0 ),

g′(u) =
α2g(u)√

c2g2(u)α2
1α

2
2 − α2

1

(28)

where g(u0) = u0 and g(u1) = u1, and,

ds

du
=

√
g′2(u)α2

1 + g2(u)α2
2 (29)

dA

du2
= g(u)g′(u)α1α2 (30)
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Equation 28 has the closed form solution,

α1

α2
{
√

c2g2(u)α2
2 − 1 + arctan(

1√
c2g2(u)α2

2 − 1
)} = u + D (31)

where D is the unknown constant of integration. Using boundary conditions that arise
from the domain and image constraints of the mapping, g(u0) = u0 and g(u1) = u1,
it follows that,

α1

α2
{
√

c2u2
0α

2
2 − 1 + arctan(

1√
c2u2

0α
2
2 − 1

)} = u0 + D (32)

α1

α2
{
√

c2u2
1α

2
2 − 1 + arctan(

1√
c2u2

1α
2
2 − 1

)} = u1 + D (33)

We solve for c,D and then use equation 31 as an implicit definition of the re-
quired diffeomorphism. In general, obtaining such explicit solutions could become
tedious and difficult. In such cases, one may solve the nonlinear differential equations
numerically using shooting methods [21].

Figure 4 shows a resulting low-discrepancy curve filling the given ring for the
specific case where u1 = 1, u2 = 2. The parameters α1, α2 and c were chosen
appropriately by numerical experimentation.

Fig. 4. A low-discrepancy curve in the annulus.

5.3 Covering the surface of a torus

The torus is one of the most important non-trivial surfaces that appear in robotics,
especially when working with configuration spaces of mechanical systems. We will
use our algorithm to generate a low-discrepancy curve for this surface. We use the
diffeomorphism u 7→ u and v 7→ g(v). Given the <3 embedding of a torus (b < a),



Low-Discrepancy Curves and Efficient Coverage of Space 13

x(u, v) = ((a + b cos(2πg(v))) cos(2πu),
(a + b cos(2πg(v))) sin(2πu), b sin(2πg(v))) (34)

ds2 = 4π2(a + b cos(2πg(v)))2du2 + 4π2b2g′2(v)dv2 (35)
dA2 = 16π4b2(a + b cos(2πg(v)))2g′2(v)du2dv2 (36)

The function g maps [0, 1] onto [0, 1] and is sufficiently smooth. Constant ratio
of ds

du and dA
du2 in α-direction can be achieved if the following equation holds true ( c

is a constant, α1 > 0):

(a + b cos(2πg(v)))2α2
1 + b2g′2(v)α2

2

4π2b2g′2(v)(a + b cos(2πg(v)))2α2
1α

2
2

= c ⇒

g′(v) =
(a + b cos(2πg(v)))α1√

4cπ2b2(a + b cos(2πg(v)))2α2
1α

2
2 − b2α2

2

(37)

The boundary conditions are g(0) = 0 and g(1) = 1. A solution of equation 37
guarantees g′(0) = g′(1). As before, this equation also admits a closed form solu-
tion. However, the resulting expressions are long and cumbersome. For the purposes
of this example, the parameter c is chosen numerically with the aid of a shooting
method. Figure 5 shows a valid function g when a = 2, b = 1. The same figure
depicts part of the resulting low-discrepancy curve lying on the surface of a torus.
Because of g′(0) = g′(1), the curve is smooth.

5.4 Covering the surface of a sphere

A more sophisticated example is a part of a sphere given as an abstract surface by
ds2 = 4π2 sin2(πg(v))du2 + π2dv2 where (u, v) is in [0, 1]× [v0, v1] with v0 < v1

in (0, 1). A Euclidean embedding of this surface is given by,

x(u, v) = (sin(2πu) sin(πg(v)), cos(2πu) sin(πg(v)), cos(πg(v))) (38)

The function g(v) is smooth and maps [v0, v1] onto [v0, v1]. According to Defin-
ition 1 and equation 23, we have,

g′(v) =
2 sin(πg(v))α1√

4c2π2 sin2(πg(v))α2
1α

2
2 − α2

2

(39)

The boundary conditions are g(v0) = v0 and g(v1) = v1. Figure 6 depicts the
resulting low-discrepancy curve.
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a b

Fig. 5. Low-discrepancy curves filling the surface of a torus, part a, based on an appropriately
computed function g, part b.

Fig. 6. A low-discrepancy curve on the surface of a sphere. The figure on the right shows the
three 2-dimensional projections along the axis planes.

6 Discussion

Broadly speaking, there are three major steps in the procedure outlined above:

1. Define a criterion according to which the curve optimally covers space. This is a
fairness requirement.

2. Define a diffeomorphism that carries the unit square to an abstract surface.
3. Based on the previous two steps, solve a differential equation whose solution

yields the diffeomorphism that respects our stated criterion for fairness.

In this paper, we have defined fairness according to the requirement that any
two arbitrary segments of the curve, if they have the same length, must cover the
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same amounts of area or volume. This is an intuitively obvious definition. There are
several ways to extend the definition of fairness. For instance, we could ask that the
diffeomorphism must be area preserving along several arbitrarily defined directions
or for hyperplanes in n-dimensional space. Fairness requirements of this sort would
be difficult to factor into the traditional techniques for generating low discrepancy
sequences but do not substantially affect our proposed algorithm.

In this paper, for the purposes of exposition, we have considered somewhat
regular and symmetric shapes. Our proposed algorithm would apply to other sit-
uations as well. For instance, consider a simple generalization to the surface de-
fined in section 5.2, a generalized annulus defined in terms of the intersection of
two planar surfaces with star-convex but otherwise arbitrarily shaped boundaries.
Instead of x(u, v) = (g(u) cos v, g(u) sin v), use the more general parametrization
x(u, v) = (M(u, v), N(u, v)). Then our procedure for determining the diffeomor-
phism would generate a partial differential equation, of the structural form (ignoring
constants), (MuNv−MvNu)2 = (Mu+Mv)2+(Nu+Nv)2. This differential equa-
tion would need to be solved subject to boundary conditions defined by the shape of
the boundary of the planar surfaces. The mathematical structure of this equation
bears a resemblance to Cauchy-Riemann equations and conformal mappings. How-
ever, our procedure applies to higher dimensions and handles other requirements
including area preservation.

7 Conclusions

We have provided an extension of the theory of low discrepancy sequences to de-
fine curves that can uniformly cover space. In doing so, we take an approach that
is more general than prior work that has depended on constructing and selecting
points from lattices and grids. Our approach is applicable to any problem where the
space to be covered can be described by an appropriate Riemannian metric. We have
demonstrated the applicability of our proposed approach using examples that are of
relevance to robotics.

In our current and future work, we are trying to extend these ideas in several
directions. Firstly, as mentioned in section 6, we are studying the problem of covering
star-convex but otherwise arbitrarily shaped spaces with obstacles. Our approach to
solving these problems results in partial differential equations whose structure bears
a resemblance to Cauchy-Riemann equations. Inspired by such connections, we are
exploring ways to define generalized area preserving mappings that could have useful
applications in robotics. In addition, we are also investigating the application of this
technique to other abstract spaces, including parameter spaces of dynamical systems
and shape spaces of reconfigurable robots.
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