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Abstract: We consider the problem of computing a minimum-weight polygonal
path between two points in a weighted polygonal subdivision, subject to the con-
straint that the path have few segments (links). We give an algorithm that generates
paths of weighted length at most (1 + ε) times the weight of a minimum-cost k-link
path, for any fixed ε > 0, while using at most 2k − 1 links. This is an improve-
ment over the previous (1 + ε)-approximation algorithm, which used at most 5k − 2
links. Further, we have implemented our new algorithm and we have conducted a
performance study of these algorithms (old and new) on a variety of real-world and
synthetic data, comparing not only the efficiency but also the quality of paths gen-
erated using these algorithms. We also consider the implications of these results on
the practical usage of these algorithms.

1 Introduction

Consider a mobile robot that moves within an environment that is partitioned
into regions, each having an associated weight, which represents the cost per
unit distance for travel in the region. Furthermore, assume that there is a
cost associated with each turn that the robot makes. Given an environment
specified by a weighted polygonal subdivision, R, and given a positive integer
k, our goal is to compute a minimum-cost polygonal path for the robot, from
point a to point b, subject to the constraint that the path have at most a
specified number, k − 1, of turns, and therefore at most k links (edges).
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In a weighted subdivision the distance between two points a and b within
the same region Ri ∈ R is defined as the product of the weight wi of Ri and
the Euclidean length |ab| of the line segment ab. For a path p (not necessarily
polygonal), the portion of p that is contained within some region Ri ∈ R has
its length defined as the product of the Euclidean length of p ∩ Ri and the
weight wi. The length ||p|| of the path p is the sum of the lengths over each
region it intersects. The weight of a path that follows an edge ei,j that forms
the boundary between two regions Ri and Rj is defined as min{wi, wj}. We
assume R is triangulated and has n vertices in general position.

1.1 Related Work

For a survey of optimal path algorithms in geometry, see [14,15].
Minimum-cost paths in weighted subdivisions were first studied algorith-

mically by Mitchell and Papadimitriou [16], who give a (1+ ε)-approximation
algorithm to compute optimal paths that runs in polynomial time (logarithmic
in 1/ε). Alternative solution methods for the weighted region problem (WRP)
are based on discretizing edges of the subdivision, placing Steiner points ju-
diciously, and interconnecting them to form a discretization graph, G(V,E),
which is then searched for a shortest path. The first experimental studies of
the weighted region problem ( [11,13]) were based on implementations of such
algorithms. Much of the subsequent WRP work has focused on the placement
of Steiner points either on edges [1, 2, 21] or on face bisectors [3], with clever
techniques to speed the computation of shortest paths in the discretization
graph [3,21]. None of these algorithms for the WRP permit one to bound the
number of links/turns in the produced path.

The special case of the 1-link minimum-weight path between two regions
in a weighted subdivision, often called the optimal “link” or “penetration”
problem, was first studied in [5,6]. In [5] the optimal link problem is reduced
to O(n2) subproblems each of which minimizes a two-variable function f(x, y)
over a convex domain D, where f(x, y) is given as a sum of O(n) fractional
terms. An optimal link between two regions must pass through a vertex in
the subdivision [7], a property that has been exploited to create efficient ap-
proximation algorithms based on a prune and search approach and a sum of

fractionals approach [9].
The first algorithms to approximate k-link shortest paths in weighted re-

gions, with guaranteed approximation bounds, are proposed in [9]. Two differ-
ent algorithms for approximating k-link shortest path are proposed based on
the computation of exact optimal links or approximate optimal links. Their
solutions produce approximation paths that are within an (1 + ε)-factor from
optimal (ε-approximation paths for short) and have 5k−2 links and 14k links,
respectively. As in the algorithms in [3,12,21], a discretization graph G(V,E)
is constructed from Steiner points placed on edges in the subdivision. The
construction of G differs in two important ways from discretizations for the
shortest path problem. The first difference arises in the placement of Steiner
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points. A vertex-vicinity (see Section 1.3) is chosen small enough so that no
line can intersect three vertex-vicinities. The second difference is in the defi-
nition of G. Nodes in V correspond to Steiner edges (not points) and vertices
in the subdivision. Edges in E correspond to optimal links between the nodes
in V .

The problem of computing optimal k-link paths in weighted regions has
been studied in air traffic management applications, where the weights corre-
spond to traversability or risk factors associated with hazardous weather or
congestion, and the turn constraint corresponds to the need to bound the hu-
man factors complexity of flight trajectories, both from the pilot’s perspective
and from the air traffic control perspective. The algorithms implemented for
this application in Krozel et al. [10] rely on searching grids, using Bellman-
Ford methods, but do not provide guarantees of solution quality.

The problem of computing shortest k-link paths in unweighted settings
(e.g., in simple polygons or polygonal domains) has been studied by Piatko
et al. [4, 17, 19].

1.2 Our Contribution

In this paper we describe two new techniques for approximating k-link shortest
paths in weighted regions, we implement a solver with a suite of algorithms
(new and old), and we perform an experimental investigation:

• We prove that by shrinking the vertex-vicinity by a constant factor of
µ, which depends on some parameters of the subdivision, we can find a
(2k − 1)-link path p formed from exact optimal links and turning only on
edges, such that ||p|| ≤ (1 + 2ε)||pk|| where pk is an optimal k-link path
from s to t.

• We show that using approximate optimal links we can find a (2k− 1)-link
path p formed from approximate optimal links and turning only on edges
such that ||p|| ≤ (1 + 7ε)||pk|| where pk is an optimal k-link path from s
to t.

• We implement our new methods, as well as those previously proposed. We
have built an extensive software system, “k-LinkSolver”, which is available
for public use.

• We conduct the first experimental investigation of these k-link path so-
lutions. We compare and contrast the run-time performance and solution
quality of our new algorithms with those described in [9], and consider the
implications of our results on the practical usage of these algorithms. This
is the first intensive study on the real-world performance of any of these
algorithms.

We refer to a path as being an ε-good approximation if its weighted length
is within a (1 + ε)-factor of the weight of a corresponding optimal path. That
is, p is an ε-good approximation of a path pk if ||p|| ≤ (1 + ε)||pk||. A Cε-good
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approximation refers to a path whose weighted length is within a (1 + Cε)-
factor of the weight of an optimal path where C is a constant. By letting ε′ =
ε/C it is clear that a Cε-good approximation forms an ε′-good approximation.
That is, any Cε-good approximation trivially forms an ε-good approximation.
From this point forward, we will generally refer to paths as ε-good disregarding
the constant C to mean this and we will state results as being Cε-good or
within a (1+Cε)-factor to acknowledge the specific constant C required. Thus,
the two solutions presented here form ε-good approximations.

1.3 Definitions and Notations

We begin by describing the terminology and discretization scheme used here.
Whenever possible, our definitions and notations are similar to those in [9].
Let ER be the set of edges that bound the weighted regions of the weighted
subdivision R. Let ER(v) be the set of boundary edges incident to a point v
and let d(v) be the minimum Euclidean distance between v and the edges in
ER \ER(v). For each edge e ∈ ER, let d(e) = supv∈e d(v). Let v(e) be a point
on e such that d(v(e)) = d(e). The cell formed by the regions incident to a
vertex v is called the vertex-cell of v and is denoted by C(v) (Ci for short for
a vertex vi).

For each vertex of R in each possible vertex triplet formed by the vertices
in R we compute the minimum distance to the line supporting the opposite
edge. Let γi be the minimum such distance obtained from a triplet containing
the vertex vi, and let γ = min{γi/2 | i = 1, 2, . . . , n}. Using a result in [8], γ
can be found in O(n2 log n) time.

For each vertex v of R, let r(v) = min(εd(v)/c, γ) where c is an appropri-
ately chosen constant (see Lemma 2). The disk of radius r(v) centered at a
vertex v defines the vertex-vicinity S(v) of v (or Si for short for a vertex vi).
We refer to r(v) as the vertex-vicinity radius for v. Note that the choice for
r(v) ensures no line can cross more than two vertex-vicinities. This depends
on the non-degeneracy assumption that no three vertices of the subdivision
are collinear.

We now describe how the Steiner points on an edge e = v1v2 are chosen.
Each vertex vi, where i = 1, 2, has a vertex-vicinity Si of radius r(vi) and
the Steiner points vi,1, . . ., vi,ji

are placed on e such that |vivi,1| = r(vi) and
|vi,mvi,m+1| ≤ εd(vi,m), m = 1, 2, . . . , ji − 1 (where equality holds in all cases
except possibly when m = ji − 1). The value of ji is such that vi,ji

= v(e).
Let δ be the maximum number of Steiner points placed on an edge of the
subdivision. The line segment formed by two adjacent Steiner points vi,m and
vi,m+1 is called a Steiner edge. The pairing of any two Steiner edges forms a
quadrilateral shape called a Steiner strip. The shape could be degenerate if
the Steiner edges are on the same boundary edge or share a vertex.

If a path in R is restricted to turn only on edges it is said to be edge-

restricted otherwise the path is said to be edge-unrestricted. If a link that
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makes up a polygonal path follows an edge of the subdivision (rather than
crossing a face) it is said to be edge-crawling.

A key subproblem in approximating k-link shortest paths is that of finding
“good” 1-link paths (links for short). We refer to two different kinds of good
links. An exact optimal link is one that has been solved such that no error
exists. An approximate optimal link is within a (1+ ε)-factor from an optimal
link. Finally, for a path pk, we use |pk| to denote its Euclidean length and
||pk|| to denote its weighted length.

2 Approximating k-link Shortest Paths

We recall a key theorem from [9]:

Theorem 1. Given two points s and t of R, there exists a path p between s
and t with at most (2k−1)-links, that turns only on the edges of the subdivision

and such that the weighted length of p is at most that of a k-link shortest path

pk from s to t.

The edges added to transform an edge-unrestricted path to an edge-
restricted path can be thought of as cutting the “corners” off the edge-
unrestricted path against the edges of the subdivision. We call such links
corner-cutting links.

In [9] it is shown how to construct “normalized” paths that either com-
pletely or partially avoid vertex-vicinities. The penalty of such an approach
is often a higher constant multiplier bounding the number of links. In this
section we propose an alternative that decreases the number of links in an
approximating path to (2k − 1) at the cost of increased complexity in the
discretization graph.

We do this by decreasing the size of the vertex-vicinity radius to r(v) =
min(µεd(v)/c, γ) where µ = wmin/wmax and c is an appropriately chosen
constant (see Lemma 2). The discretization graph G(V,E) is defined similarly
to [9] but with a few subtle changes. Nodes in V still correspond to Steiner
edges and vertices in the subdivision but also include what we will refer to as
interior Steiner edges. An interior Steiner edge is the edge between a vertex
and the first Steiner point on an edge incident to the vertex. Edges in E then
correspond to optimal links between pairs of nodes in V .

Lemma 1. A k-link shortest path, pk, completely contained in a vertex-

vicinity has a maximum weighted length of 2εwmind(v)/c.

Proof. Let l be a link from the start of the path pk to the end of the path
pk (see Fig. 1). Clearly, if ||pk|| > ||l|| then pk is not an optimal path.
Therefore, ||pk|| ≤ ||l||. The length of l is constrained by the size of the
vertex-vicinity and thus, |l| < 2εµd(v)/c or ||l|| < 2εwmind(v)/c. And finally,
||pk|| < 2εwmind(v)/c. We may also conclude that only one link is required
for a path p′k to approximate a path pk such that ||p′k|| < 2εwmind(v)/c.
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r = µεd(v)/c

pk

l
s

t

Fig. 1. pk has a maximum weighted length of 2εwmind(v)/c where c is an appro-
priately chosen constant.

In this paper, we assume the end points of a path pk are separated by
a distance Ω(d(vi)) for any vertex-vicinity Si through which pk passes. If
|pk| ¿ d(vi), then pk is a trivial path.

Lemma 2. A k-link path, pk, that turns on edges can be approximated by a

2ε-good (2k − 1)-link path made up of k optimal links and k − 1 connecting

links.

Proof. Let the path pk be divided into j subpaths, pk1
, . . ., pkj

, as defined
below (see Fig. 2). Let pk0

= ∅. If i = 1 then subpath pki
begins where pk

begins otherwise subpath pki
begins where pki−1

ends. With pki−1
known, the

subpath pki
is defined as follows. Consider the first vertex-vicinity Si that pk

crosses after pki−1
.

S1

C1

S2

C2

pk1

pk2

pk3

Fig. 2. Three subpaths, pk1
, pk2

and pk3
.

Case 1: If pk crosses the boundary of the vertex-cell Ci before entering
Si then let the subpath pki

terminate at the first turn after pk exits Si. If no
such turn exists, or pk does not exit Si, then let pki

end where pk ends.
Case 2: If pk does not cross the boundary of Ci before entering Si, then

let the subpath pki
terminate at the first turn after pk exits Ci. If no turn

exists after pk exits Ci then let pki
end where pk ends. If pk does not exit Ci,

then we let pki−1
end where pk ends.

A subpath pki
so constructed may intersect no more than four vertex-

vicinities and |pki
| = Ω(d(v)) for any vertex-vicinity v crossed by pki

(see
below for a more precise lower bound). Four vertex-vicinities may be crossed
if Case 2 is applied once in a situation similar to the last example in Fig. 3



An Experimental Study of Weighted k-Link Shortest Path Algorithms 7

(b)(a) (c)

Fig. 3. Several examples of (a) Case 1 and (b) Case 2 described in Lemma 2 and
(c) where Case 2 is applied twice on a single subpath.

(b) and then again for a small link that crosses a vertex-vicinity as illustrated
in Fig. 3 (c).

Note that (1+ ε)||pk|| =
∑j

i=1
(1+ ε)||pki

||. Let p′k be a path that approxi-
mates pk with k optimal links and k− 1 connecting links. We prove p′

k can be
constructed such that ||p′k|| < (1 + 2ε)||pk|| by proving ||p′ki

|| < (1 + 2ε)||pki
||.

First consider a subpath π of pki
that does not cross a vertex-vicinity and

its approximating subpath π′. Such a path π is made up of one or more links,
l1, . . ., lξi

. Then ||π|| =
∑ξi

j=1
||lj || and by extension, (1 + ε)||π|| =

∑ξi

j=1
(1 +

ε)||lj ||. Let e1 and e2 be the Steiner edges that a link lj ∈ π originates and
terminates at respectively. Let l∗j be an optimal link between e1 and e2. Clearly,
||l∗j || ≤ ||lj ||. Consider the contribution of the last region that lj crosses before
connecting to lj+1. Let this region be R1 with corresponding weight w1. Let
d1 = |R1 ∩ lj |. Since in general the endpoints of l∗j and l∗j+1 on e2 are distinct,
we need to add a single link, lmj

, to connect l∗j and l∗j+1 on e2 (lmj
is an

edge-crawling connecting link). The link lmj
can have length no greater than

that of the Steiner edge on which it lays.
We have |lmj

| ≤ εd(v2), with v2 an endpoint of the Steiner edge e2. By
definition, d(v2) ≤ d1. Therefore, |lmj

| ≤ εd1. The contribution lmj
makes

to approximate lj is no more than εw1d1, i.e., d1w1 + ||lmj
|| ≤ (1 + ε)w1d1.

Using l∗j and lmj
to approximate lj we have ||l∗j ||+ ||lmj

|| ≤ (1 + ε)||lj ||, since

||l∗j || ≤ ||lj ||. It then follows that ||π′|| =
∑ξi

j=1
(||l∗j || + ||lmj

||) <
∑ξi

j=1
(1 +

ε)||lj || = (1 + ε)||π||. Equivalently,
∑ξi

j=1
||lmj

|| < ε||π||.
Next consider what happens when pki

crosses a vertex-vicinity S(v) of
vertex v. From Lemma 1, if pki

consists of several links contained in S(v), they
can be replaced by a single link, of weighted length no more than 2εwmind(v).

Let ls be a link in the path pki
that enters S(v) and let lt be a link that

exits S(v) (see Fig. 4). Let l∗s be an optimal link that begins and ends on
the same Steiner edges as ls. Let l∗t be an optimal link that begins and ends
on the same Steiner edges as lt. Clearly, ||l∗s || ≤ ||ls|| and ||l∗t || ≤ ||lt||. Let
lm be a connecting link (not necessarily edge-crawling) that connects l∗s to
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lm

ls l
∗

s

l
∗

t

lt

Fig. 4. Approximating path construction inside a vertex-vicinity.

l∗t . We need to bound lm in terms of pki
. We can find a lower bound for

the unweighted length of pki
by using d(v) and the vertex-vicinity radius of

S(v), i.e., (1 − εµ/c)d(v) < |pki
| and thus d(v) < c|pki

|/(c − 1/2). The link
lm can achieve an unweighted value of no more than twice the radius of the
vertex-vicinity, thus lm’s maximum weighted value is bounded by ||lm|| ≤
2εwmind(v)/c < 2εwmin|pki

|/(c − 1/2) ≤ 2ε||pki
||/(c − 1/2). Also recall that

up to four vertex-vicinities may exist in a single subpath pki
. If we let c = 17,

then 4||lm|| < ε
2
||pki

||.
Combining this result with the result we found for edge-crawling links

lmj
not inside the vertex-vicinity, we have a path p′

ki
with ||p′ki

|| < (1 +
3ε/2)||pki

|| < (1+2ε)||pki
||. That is, a 2ε-good subpath p′ki

can be guaranteed.
And thus, a 2ε-good path p′k can also be guaranteed.

Theorem 2. Given two points s and t of R, a k-link shortest path between

s and t can be approximated with a 2ε-good (2k − 1)-link path that turns on

edges.

Proof. Consider a link l∗i on the k-link shortest path and refer to Fig. 5. If l∗i
ends on an edge of the subdivision then Lemma 2 applies and it can be replaced
in the approximating path by one optimal link and one connecting link. If
l∗i ends inside a face of R then Theorem 1 applies, adding a corner-cutting
link that crosses the face to connect l∗i to l∗i+1. No additional edge-crawling
connecting link is required because the corner-cutting link crosses only one
face and therefore its length is adequately captured in the discretization.

This new fact that links which cross a single face do not require additional
connecting links was not considered in [9]. Applying this result, we find the
5k − 2 link and 14k link results for optimal links and approximate optimal
links are improved to 3k − 2 links and 8k links respectively.

When computing the discretization graph G(V,E), defined earlier, the
number of vertices in V is clearly bounded by the number of Steiner points
O(δn) and the number of edges in E is O((δn)2). Computing a single edge in
G corresponds to solving a 1-link shortest path problem for a specific subprob-
lem. Let this time be Th(n). Thus, the time to compute G is O((δn)2Th(n)).
Once G is constructed, we can use dynamic programming to find a k-link
shortest path in G in O(k(δn)2) time.
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(a) (b)

Fig. 5. a) Joining two optimal links with an edge-crawling connecting link (Case 1)
and (b) joining two links not constrained to edges of the subdivision with a corner-
cutting link (Case 2).

3 Approximate Optimal Links

In practice, optimal links can be time consuming to compute. Approximate
optimal links are links that take advantage of the discretization scheme already
described to find a single link within a (1 + ε) factor of optimal. Such links
were introduced in [9] but unfortunately the normalization process required
several more links than it did for optimal links. In this section we show that
approximate optimal links can be used with our new technique while still
maintaining an approximating path with no more than 2k − 1 links.

R1

R3

R2

(a)

e1

e2

l1
l2

R1

R3

R2

(b)

e1

e2

l2

l1

l
l

Fig. 6. A Steiner strip formed by lines l1 and l2 may intersect edges that are more
coarsely (a) or more finely (b) sampled. In (b) the dotted lines describe an hourglass
defined by Steiner points.

Consider an optimal link l between two edges e1 and e2. Many Steiner
points may be captured inside the Steiner strip formed by e1 and e2. See
Fig. 6. These points define a set of hourglass shaped regions, that represent
the space over which a link can be translated and rotated without passing a
Steiner point. An optimal link clearly must lie in one such hourglass. It has
been shown in [9] that an arbitrary link computed for the same hourglass
differs from an optimal link by only a factor of 1 + 2ε. Here we extend this
result to include optimal links that cross or turn inside a vertex-vicinity.
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Theorem 3. Given two points s and t of R, a k-link shortest path between

s and t can be approximated with a 7ε-good (2k − 1)-link path made up of k
approximate optimal links connected by k − 1 connecting links.

Proof. We divide the approximating path p′k introduced earlier into j sub-
paths, p′k1

, . . ., p′kj
, as already described in Lemma 2. We seek to bound the

error between a subpath p′′ki
made of approximate optimal links and a subpath

p′ki
made of exact optimal links.
Consider a subpath p′ki

. Such a path is made up of one or more optimal
links, l′1, . . ., l

′

ξi
, and one or more small connecting links (but no more than

ξi −1). The connecting links will remain constrained to the size of the Steiner
edge on which they lay or to twice the radius of a vertex-vicinity. Therefore,
we are only concerned with how much l′j and l′′j differ in length. In what
follows we show ||l′′j || differs from ||l′j || by at most a (1 + ε) factor.

The weighted length of a single link, l′j , intersecting m regions, R1, . . ., Rm,

is given by
∑m

i=1
widi. We must consider the contribution of each segment to

guarantee that the length of an approximating link l′′j is within a (1+ε)-factor
of the length of l′j .

First consider a link l′j that does not cross a vertex-vicinity. Let e1 and e2

be the Steiner edges that l′j originates and terminates at respectively. Let VS

be the set of Steiner points contained in the Steiner strip formed from e1 and
e2. VS defines O((δn)2) hourglasses where δ is the number of Steiner points
placed on an edge. Let the weighted length of an arbitrary line segment l′′j that
passes through a particular hourglass approximate the length of the optimal
line segment l′j that passes through the same hourglass. Clearly each term
that makes up the description of l′′j can vary from l′j by at most the weighted
lengths of the Steiner edges si and si+1 corresponding to that term, i.e.,
||l′′j || =

∑m

i=1
wi ∗ di(l

′′

j ) ≤
∑m

i=1
(wi ∗ di(l

′

j) + wi|si| + wi|si+1|). By definition

|si| ≤ εdi(l
′) and |si+1| ≤ εdi(l

′). Thus, ||l′′|| =
∑m

i=1
wi ∗ di(l

′′) ≤ (1 +
2ε)

∑m

i=1
widi(l

′) = (1 + 2ε)||l′||.
The optimal link for the Steiner edges e1 and e2 is captured by one of the

O((δn)2) hourglasses. The length of a representative link for one hourglass
can be found in time proportional to the number of regions intersected by the
link, and thus in O(n) time. By taking the link of smallest weighted length
over all hourglasses we have a link which approximates the optimal link for
the Steiner strip within a factor of (1 + 2ε). The overall computation of this
link takes O(n(δn)2) time.

Next, assume l′j crosses a vertex-vicinity S(v). Note that one or more links
in pki

may pass through the vertex-vicinity. Links completely contained in
the vertex-vicinity are in fact not captured at all, but we have shown the
maximum amount of error induced by such links in Lemma 1. We focus our
attention on two links in particular, the link entering and the link exiting the
vertex-vicinity (which may be one in the same link).

As a link l′j enters the vertex-vicinity S(v), it must first pass a Steiner edge
before it passes an internal Steiner edge. An arbitrary link l′′j that falls in the
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same hourglass as l′j is captured by a Steiner strip with an internal Steiner
edge. Clearly the term associated with the description of l′j in this strip can
vary by at most ||si|| + εwmind(v)/c, where si is as above. If εwmind(v)/c >
εdi(l

′

j) then the (1 + 2ε) bound we just discovered earlier does not hold. It is
necessary to consider the error in our approximation that is induced by using
internal Steiner edges not per link but per subpath.

The additional error associated with l′′j entering the vertex vicinity and
crossing an internal Steiner edge is εwmind(v)/c. Since the link l′′j may also exit
the vertex-vicinity by crossing another Steiner strip formed from one Steiner
edge and one internal Steiner edge, l′′j can vary by twice as much. The weighted
length inside the vertex vicinity is also captured by 2εwmind(v)/c where c is
an appropriately chosen constant and thus crossing a single vertex-vicinity
may cost 4εwmind(v)/c. Since a subpath p′ki

may cross four vertex-vicinities,
the maximum cost per subpath is 16εwmind(v)/c < 16εwmin|p

′

ki
|/(c− 1/2) <

16ε||p′ki
||/(c − 1/2) and choosing c = 17 we have that 16ε||p′

ki
||/(17 − 1/2) <

ε||p′ki
||.

That is, p′′ki
differs from p′ki

by at most a factor of ε due to error from
crossing internal Steiner edges. Adding this to the error incurred by crossing
arbitrary Steiner edges, p′′ki

differs from p′ki
by at most a factor of 3ε. Then,

the difference between p′′ki
and pki

is (1 + 3ε)(1 + 3ε/2) < 1 + 7ε; p′′ki
is a

7ε-good approximation of pki
and p′′k is a 7ε-good approximation of pk.

Substituting the link computation time O(n(δn)2) for Th(n) in the previ-
ous section we find the time to compute the discretization graph G(V,E) is
O(n(δn)4). As before, once G is constructed, we can use dynamic program-
ming to find a k-link shortest path in G in O(k(δn)2) time.

4 Experiments

We have implemented the algorithms described in this paper as well as the al-
gorithms described in [9] as part of a C++ application we call “k-LinkSolver”.
We refer to the k-link approximation algorithms in [9] using either optimal
links or approximate optimal links as K-Link-Opt and K-Link-Approx,
respectively, or K-Link collectively. We will refer to the new approxima-
tions based on either optimal links or approximate optimal links presented
in this paper as K-Link-Mu-Opt and K-Link-Mu-Approx, respectively, or
K-Link-Mu collectively.

We also define a new heuristic. Instead of solving for either an approximate
or an optimal link between two Steiner edges we simply solve for an arbitrary
link within a Steiner strip. When applied to the original discretization scheme
we will call this algorithm K-Link-Heur and when applied to the discretiza-
tion scheme used in this paper we call the technique K-Link-Mu-Heur. This
heuristic makes no optimality guarantees but when ε is very small we might
expect that an arbitrary link between two Steiner edges is very close in value
to an optimal link between those two edges.
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The k-LinkSolver solves for a k-link path in three stages: (1) discretization,
(2) link generation and (3) path finding. The first and second stages do not
depend on the start and end points of the path while the third stage does.
If one is interested in finding several k-link paths in a single subdivision the
first two stages can be thought of as preprocessing steps and the third stage
can be executed as many times as required.

(a) (b) (c)

Fig. 7. A discretization of (a) Mri-Data, (b) Topo-Data, and (c) Tri-Data.

We use three different data sets in these experiments. The first is a traced
MRI scan from the Visible Human Project [18] which emphasizes structure
features of the brain (Mri-Data). The second is a topological map of San-
tiago Peak from Big Bend National Park, Texas (Topo-Data). The third is
a simple subdivision generated using Shewchuk’s triangulator [20], Triangle,
with specific quality and area guarantees (Tri-Data). The discretization of
Mri-Data, Topo-Data, and Tri-Data is shown in Fig. 7.

4.1 Discretization Performance

The first stage, discretization, is the most efficient. O(nδ) Steiner points are
generated in O(nδ) time, with δ = O(1/ε) (the hidden constant in the O(·)
depends on some parameters of R, such as the maximum edge length and µ.
Each Steiner point can be computed in constant time and each Steiner point
becomes part of the discretization graph, making the discretization process
inherently output sensitive.

Since Steiner points are associated (through edges) to nodes in the dis-
cretization graph, the number of Steiner points generated directly affects the
number of links that must be calculated in the link generation phase and the
number of links that must be considered in the path finding stage. Ideally
we would like to generate as few Steiner points as possible that will make a
specific (1 + ε) approximation guarantee.

Unlike K-Link, K-Link-Mu depends on the ratio wmin/wmax. In our
first series of tests, we fix ε to 0.5 and then vary µ to gauge µ’s effect on the
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Fig. 8. (a) The effect of fixing ε and varying µ. (b) The effect of fixing µ and varying
ε.

discretization process used in K-Link-Mu. See Fig. 8 (a). Very small values
for µ can have a significant impact on Steiner point generation.

In our second series of tests, we fix µ to 0.5 and then vary ε to gauge the
effect that ε has on Steiner point generation. See Fig. 8 (b). Note that once
µ is fixed the resulting vertex-vicinity radii for the K-Link and K-Link-Mu

algorithms differ by only a constant factor. Although we would like to choose
a very small ε to guarantee the quality of the k-link path we generate, the
number of Steiner points grows quickly as ε becomes small.

4.2 Link Generation Performance

In the link generation stage O((nδ)2) links must be calculated. In our experi-
ments we computed “exact” links using the prune-and-search scheme (see [9]),
which returns an optimal link accurate to any user specified precision.

In the link generation stage we compare the running time for all of the
approaches mentioned earlier. See Fig. 9. The “exact” solutions are clearly the
most expensive while the heuristic solutions are the least expensive. Despite
the fact that the heuristic solutions do not offer any quality guarantees, in
our experiments they provided paths very close to those generated by the
algorithms that rely on computing approximate links. This is an interesting
finding given the expensive nature of link generation.

4.3 Path Finding Performance and Quality

Link generation is the true performance bottleneck in finding k-link paths.
But if we assume that discretization and link generation are preprocessing
steps to potentially many path finding operations, the performance of the
path finding step becomes of critical importance.

In our algorithms the path finding step is straightforward and requires
simple, O(k(nδ)2) computation.
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Fig. 9. Timed tests of the link generation stage.

An important issue is the quality of the paths being generated. How closely
do generated paths follow the optimal path? How closely do generated paths
come to the true or optimal k-link path value in practice?

From our experiments we have seen that when ε is quite large there is a
tendency for the path to change quite a bit as ε changes. Making a relatively
small change in ε can change the path drastically. However, as ε becomes
smaller there is a tendency for the path to “lock in” and not change drastically.
This also seems to have the effect that tightening ε to extremely small values
often does not yield proportionally better k-link path lengths.

Fig. 10 is one example of the effect of changing ε. Notice how little the
path changes between Fig. 10 (c) and (d).

(a) (b) (c) (d)

Fig. 10. Four k-link path approximations where k = 3 and (a) ε = 2.0, (b) ε = 1.0,
(c) ε = 0.5, and (d) ε = 0.25.

Changing the number of links, k, a path may utilize is usually more pro-
found. Fig. 11 is an example of the effect of changing k with a fixed ε. In this
example the path for k = 2 is actually not a bad approximation of a path
with k = 9 in that it crosses all of the same faces. This is less likely to be true
when considering more complex subdivisions.
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(a) (b) (c) (d)

Fig. 11. Four k-link path approximations where ε = 0.5 and (a) k = 2, (b) k = 3,
(c) k = 4, and (d) k = 9.

5 Conclusions

In terms of theory, we believe it will be difficult to improve on the 2k− 1 link
result for an approximating k link path that turns only on edges. Future work
that seeks to improve this result may need to consider discretization schemes
where Steiner points could also be placed inside the faces of R.

Our experiments highlight many of the difficulties and computation inten-
sive facets of this problem. While it may be difficult to improve on the number
of links in an approximating path we believe there is potential for improving
the running time for finding solutions using new techniques. For example,
while the K-Link-Mu result provides a nicer theoretical result by reducing
the number of links in an approximating path, the relationship between µ and
Steiner point generation often makes K-Link the more desirable algorithm.
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