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Abstract: Given a linkage belonging to any of several broad classes (both planar
and spatial), we have deflned parameters adapted to a stratiflcation of its defor-
mation space (the quotient space of its conflguration space by the group of rigid
motions) making that space \practically piecewise convex". This leads to great sim-
pliflcations in motion planning for the linkage, because in our new parameters the
loop closure constraints are exactly, not approximately, a set of linear inequalities.
We illustrate the general construction in the case of planar nR loops (closed chains
with revolute joints), where the deformation space (link collisions allowed) has one
connected component or two, stratifled by copies of a single convex polyhedron via
proper boundary identiflcation. In essence, our approach makes path planning for a
planar nR loop essentially no more di–cult than for an open chain.

1 Overview

Motion planning is important to the study of robotics [13, 3, 15] and is also
relevant to other flelds as diverse as computer-aided design, computational
biology, and computer animation. A unifying concept for motion planning is
the set of all conflgurations of a system under study, called the conflguration
space of the system and here denoted CSpace. In terms of CSpace, motion
planning amounts to flnding a valid curve connecting two given points, where
a system conflguration is valid if it satisfles the underlying constraints of
the system|e.g., the collision free constraint for rigid objects, joint limit
constraints for linkage systems, and loop closure constraints for closed chains.
Thus all the complexity of motion planning is encoded in CSpace and its
partition into subsets CFree and CObstacle of valid and invalid conflgurations.

In many practical systems, CSpace has high dimension and a complicated
structure in its own right. For some constraints, the partition introduces much
greater complication; for instance, the fastest complete planner taking into
account the ubiquitous collision free constraint [2] has exponential running
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time complexity. The general impossibility of analytically computing CSpace
and its partition has driven the development of sampling based methods like
Probabilistic Roadmap Methods (PRM ) [11] and Rapidly-exploring Random
Trees (RRT ) [12], that try to capture the connectivity of CSpace or CFree
using sampling and discrete data structures. These methods have been shown
to perform very well for many di–cult motion planning problems.

Knowledge of CSpace|hard as it is to compute|is invaluable for under-
standing the system in question and developing e–cient motion planning algo-
rithms. There has been renewed interest in studying and determining CSpace
in the past few years. In particular, Trinkle, Milgram and Liu [22, 20, 18, 17]
have made important discoveries for CSpace of a kinematic chain with fully ro-
tatable joints, either n spherical joints in space (nS) or n revolute joints (nR)
in the plane. Building on earlier work by geometers [16, 10], they obtained
results on the geometry and topology of the set of closure conflgurations for
a closed chain, initially without imposing the collision free constraint but re-
cently allowing point obstacles. Using this information they develop complete
path planners, such as an O(n3) accordion planner for a closed chain (ignoring
collisions), and a planner for avoiding p point obstacles with conjectural lower
and upper bounds ›(pn¡3) and O(p2n¡7). Their work, formulated with joint
angle parameters, uses advanced topological tools.

The conflguration of a multi-object system in the plane R2 or space R3 can
be described by the conflguration of the objects with respect to a local frame
and a transformation from the local frame to a flxed reference frame. Unlike a
rigid body which has flxed local coordinates for all points, a multi-body system
has difierent local conflgurations. Thus a conflguration of a multi-body system
is described by a rigid body transformation together with a deformation of
the system, and the conflguration space has the product structure CSpace =
DSpace £ RM , where RM is the group of all rigid motions and DSpace is the
set of all deformations (or deformation space) of the system. In other words,
DSpace is CSpace modulo rigid motions in Euclidean space of the appropriate
dimension. For instance, for a kinematic chain the local coordinates of the
joints are changed by deformations facilitated by the joint degrees of freedom,
and restricted by constraints|e.g., flxed link lengths and, for closed chains,
the loop closure constraint|which are independent of rigid motions and so
efiectively are deflned on DSpace of the chain. Here we focus on the DSpace
of a loop and ignore the collision free constraint until section 3.3.

We have recently developed a new set of parameters|in this paper de-
noted by r and s|to describe DSpace for many broad classes of planar and
spatial linkages, including planar chains and loops with revolute joints, spa-
tial chains and loops with spherical joints, chains with variable link lengths
(which can model prismatic joints), and various kinematic structures more
complicated than a chain or single loop. (Linkages can also be used to model
a sequence of points under distance constraints.) Unlike the parameters used
in earlier work, r and s are not joint parameters: r is a vector of inter-joint
distances, and s is a vector of triangle orientation data to be described below.
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(a) A linear path for a spa-
tial 1000S loop
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(b) DStretch, and one component of
DSpace, for a planar 5R loop

Fig. 1. The 5R loop in (b) has link lengths (100; 42; 37; 95; 86).

We use r and s to endow DSpace of a linkage with a stratiflcation rendering
it practically piecewise convex in a sense we will explain. For both planar and
spatial linkages, r and s are uncoupled and r carries the complicated part
of the \practical piecewise convexity" of DSpace; for planar linkages, s serves
only to keep track of the \pieces", whereas for spatial linkages there is just one
\piece" and s serves only to contribute extra \practically convex" dimensions.

Complete treatments of our stratiflcation and new parameters for various
linkage types|including both spatial and planar chains|will appear in our
future papers. Here we describe our approach for the special but representa-
tive case of a planar nR loop, which gives an excellent indication of one major
computational and conceptual advantage of our new approach, namely, how
constraints (e.g., closure constraints on a loop) that are highly non-linear in
terms of traditional joint angle parameters become linear inequalities in terms
of r and s. Our reformulation of the constraints and the resulting practical
piecewise convexity of DSpace greatly simplify motion planning for both pla-
nar nR loops and spatial nS loops, as highlighted by the following examples.

Example 1. Consider the problems of generating and joining closure defor-
mations for a loop. Fig. 1(a) illustrates a path between two deformations of a
certain spatial 1000S loop with randomly chosen link lengths. The two ends of
the path were generated by a method we call diagonal sweeping [8]. For each,
we found a valid vector r of 997 positive inter-joint distances, and a vector
s of 997 random angles in [0; 2…] specifying triangle orientations (all angles
are valid), in 19 milliseconds with Matlab on a desktop computer. Our space
of valid vectors r and the cut-open 997-dimensional torus [0; 2…]997 are both
convex, so the path was then very easily calculated using linear interpolation.

Example 2. A planar nR loop has more complicated DSpace and path plan-
ning than a spatial nS loop. For a planar nR loop with generic link lengths, the
set of feasible values of r, which we call DStretch, is an (n ¡ 3)-dimensional
convex polyhedron, and \almost all" of DSpace can be reconstructed from
2n¡2 copies of DStretch glued together along parts of their boundaries into
either one connected component or two (depending on the number of \long
links", a technical term [22]; see section 2.4); the remainder of DSpace is
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(a) A linear path
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Fig. 2. The linear path in (a) stays in one stratum but has collisions. The 3-segment
path in (b){(d) joins the same endpoints and is collision free|segment 1 ends on
the edge of one copy of DStretch, segment 2 crosses a second copy from one edge to
its opposite (where s has the same value), and segment 3 returns to the flrst copy.

comparatively low-dimensional and does not hinder motion planning. For
one 5R loop, Fig. 1(b) shows the 2-dimensional DStretch and one com-
ponent DSpace, comprising four copies of DStretch labeled with s-values
(s(1); s(2); +) (s(i) 2 f+; ¡g; see section 2) and joined along the indicated
pairs of edges; the copies in the other component are labeled (s(1); s(2); ¡).

Example 3. If the collision free constraint is not imposed, motion planning in
DSpace is straightforward. Within each copy of DStretch the convex structure
provides a unique linear path joining any given start deformation to any given
goal. Fig. 2(a) illustrates this for the copy of DStretch labeled (+; ¡; +) in
Fig. 1(b). Passing between copies is still straightforward, although uniqueness
of paths is lost|a fact which can be advantageous for motion planning. In
fact, any path joining deformations on difierent copies of DStretch necessarily
passes through singular deformations. In section 3, we use a notion of singu-
larity depth (deflned in section 2.3) to give upper bounds on the number of
singular deformations that must traversed by a path joining two given closure
deformations of a planar nR loop. There is a trade-ofi between the number
of singular deformations traversed and their depth. Essentially, the greater
the singularity depth of a deformation, the more singular the deformation;
a non-singular deformation has singularity depth 0. We show that any two
closure deformations in the same component can be connected by a piecewise
linear path traversing at most n ¡ 2 singular deformations, all of depth 1;
they can also be connected via at most 2 singular deformations, one of which
has singularity depth at least n ¡ 3 (it is a triangle deformation generalizing
one devised by Lenhart and Whitesides [16]). Importantly, the singular defor-
mations are reusable and easily computable. For n = 1000, we can flnd 998
singular r values of singularity depth 1 in about 20 seconds.

To flnd collision free paths like that in Fig. 2(b-d), we have developed
a preliminary probabilistic planner that makes essential use of our e–cient
closure deformation generation and connection methods.

The e–cient algorithms and nice geometry of our approach make many
more systems available for use in robot design, where inverse kinematics
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(closely related to closure deformation generation), motion planning, and sim-
ilar kinematic issues are very important (see [5, 21]).

2 DSpace for a planar nR loop

2.1 The idea of a stratiflcation

We recall a few deflnitions from the mathematical theory of stratiflcations
(see [6]). Suppose X is a subset of Euclidean space RN . A partition S of X
into subsets M1; : : : ; MK is a stratiflcation in case: (1) Mi \ Mj = ; for i 6= j;
(2) each Mj is a connected smooth submanifold of RN ; and (3) for each i
the closure cl(Mi) of Mi is itself the union of some of the Mj . Each Mi is
called an S -stratum. For (i 6= j), Mi and Mj are incident if Mi ‰ cl(Mj) or
Mj ‰ cl(Mi). The dimension dim(X) of X is maxfdim(Mi) j i = 1; : : : ; Kg;
the codimension codim(Mi) of Mi is dim(X) ¡ dim(Mi). If codim(M) = 0
then M is an open subset of X (in the topology induced on X by RN ); if X is
connected then X is the closure of the union of the codimension-0 S -strata.

Simple but paradigmatic examples of stratiflcations come from convexity
theory. Let P ‰ RN be a convex polyhedron, i.e., a closed bounded subset of
RN that is the intersection of flnitely many closed half-spaces. The dimension
dim(P ) of P is the dimension of the unique smallest °at (i.e., translated
linear subspace of RN ) containing P ; the relative interior of P is its actual
(topological) interior as a subspace of that °at|equivalently, the set of all
points of P not contained in a face Q of P with dim(Q) < dim(P ). The
partition of P into the relative interiors of all its faces is a stratiflcation we
call the face stratiflcation SFace of P . Each SFace-stratum Q is convex, as
is cl(Q); P has exactly one codimension-0 SFace-stratum. Below we make
extensive use of SFace for a polyhedron we associate to a planar nR loop.

2.2 New Parameters

Consider a closed chain in the plane R2 consisting of n rigid links with con-
secutive link lengths lj > 0 (j = 0; : : : ; n ¡ 1), connected by n revolute joints.
Denote the consecutive joints of the chain by Pj , so link j is the vector PjPj+1

(indices are modulo n). We call P0 the anchor of the loop, and in general call
an object \anchored" if it includes P0. For j = 1; : : : ; n ¡ 1, we call the vec-
tor P0Pj an anchored diagonal of the loop; the anchored diagonals P0P1 and
P0Pn¡1 are also links of the loop and thus have flxed non-zero lengths, but
other anchored diagonal lengths can vary and may be 0. As illustrated in
Fig. 3(a), for j = 1; : : : ; n ¡ 2 we denote by Tri(j) the anchored triangle with
vertices at joints P0, Pj , and Pj+1; one edge of Tri(j) is link j and the others
are anchored diagonals. At a given point of DSpace, Tri(j) is degenerate (i.e.,
reduces to an anchored line segment) if and only if its vertices are collinear,
which can happen in two distinct ways: either Tri(j) has three distinct but
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P2
Pn−2

Pn−1

Pj−1
Pj+1

Pj

Tri(n−2) Tri(j) Tri(j−1)

Tri(1)

(a) Here s(1) = s(j ¡ 1) = 1, s(j) = 0,
and s(n¡2) = ¡1; Tri(j) is degenerate,
with r(j ¡ 1) = r(j) + lj .

(b) Two 10-bar deformations with
opposite orientations: all s(j) are
+ at the left, ¡ at the right.

Fig. 3. New parameters and deformation examples

collinear vertices, or Tri(j) has exactly two distinct vertices, in which case we
call it doubly degenerate. (Since lj > 0, Tri(j) cannot reduce to a point.) Note
that Tri(j) is doubly degenerate in a given deformation if and only if one of
Pj , Pj+1 coincides with P0, so that Tri(j ¡ 1) or Tri(j + 1), respectively, is
also doubly degenerate. We denote the subset of DSpace of deformations with
no doubly degenerate anchored triangles by NDD , and its subset of defor-
mations with no degenerate anchored triangles by ND .(A loop deformation
that is singular in the traditional sense but includes no degenerate anchored
triangle poses no problems for our new parametrization, so for our purposes
it is non-singular. We will discuss the role of anchor choice in future papers.)

In a sense, our new parameters for DSpace are the triangles Tri(j) them-
selves, as embedded in the plane modulo a single rigid motion. We extract
more conventional parameters from them as follows (see Fig. 3).

Deflnitions. (1) For j = 1; : : : ; n ¡ 3, let r(j) = kP0Pj+1k; the link lengths
l0; : : : ; ln¡1 and the vector r = (r(1); : : : ; r(n ¡ 3)) 2 Rn¡3 of lengths of
anchored diagonals that are not links together encode Tri(1); : : : ; Tri(n ¡ 2)
up to unoriented congruence. The flrst n ¡ 3 of our new parameters are
r(1); : : : ; r(n ¡ 3). A deformation belongs to NDD if and only if every r(j) is
strictly positive. (2) For j = 1; : : : ; n ¡ 2, let s(j) be the sign of the determi-
nant with flrst column P0Pj and second column P0Pj+1; so s(j) is 0 if Tri(j)
is degenerate, and otherwise it is + or ¡ according as the vertices P0, Pj ,
Pj+1 are oriented counterclockwise or clockwise. The last n ¡ 2 of our new
parameters are s(1); : : : ; s(n ¡ 2). Let s = (s(1); : : : ; s(n ¡ 2)).

On NDD , r and s (deflned throughout DSpace) truly are parameters.

Theorem 1 The restriction of (r; s) : DSpace ! Rn¡3 £ f¡; 0; +gn¡2 to
NDD is one-to-one onto its image.

Proof. Given the value of r on a planar nR loop with flxed link lengths
l0; : : : ; ln¡1 and no doubly degenerate anchored triangles, we flrst reconstruct
the triangles Tri(j) abstractly. Using the value of s on the deformation, and
starting from an arbitrary placement of Tri(1) in R2, we then successively
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lay down Tri(2); : : : ; Tri(j ¡ 2) in positions that are well-deflned because at
each step the anchored edge along which the next triangle must match up has
length r(j ¡ 1) > 0 and the orientation sign s(j) determines on which side
of that edge (if either) that triangle must lie. The only indeterminacy in this
construction is the initial placement of Tri(1); any two such placements difier
by a rigid motion of R2 that is well-deflned because r(1) > 0. ⁄

Theorem 1 says that valid loop deformations in NDD correspond exactly
to feasible values of (r; s). Moreover, given a feasible value of (r; s), the way we
constructed the corresponding valid loop deformation makes it clear that we
obtain other feasible values of (r; s) by changing an arbitrary set of non-zero
entries of s from + to ¡ or vice versa: reversing the sign of s(j) corresponds
to reversing the orientation of the non-degenerate triangle Tri(j) by °ipping
it across the anchored diagonal P0Pj , and clearly any subset of the non-
degenerate anchored triangles in a valid loop deformation can be °ipped to
create a new valid loop deformation|the entries of s are uncoupled from r,
and (for a given value of r) from each other. We sum this up as follows.

Corollary 1 If r(1); : : : , r(n ¡ 3), s(1); : : : ; s(n ¡ 2) are the parameters of a
valid deformation in NDD, then there is a valid deformation in NDD with pa-
rameters r(1); : : : ; r(n ¡ 3), "(1)s(1); : : : ; "(n ¡ 2)s(n ¡ 2) for every \triangle
reorientation" function " : f1, . . . , n ¡ 2g ! f+; ¡g. ⁄

Thus the problem of understanding the topology and geometry of NDD
breaks into two subproblems: (A) What is the topology and geometry of the
set r(NDD)? (B) How can s be used to recover the topology and geometry of
NDD from r(NDD)? We answer (A) in section 2.3 and (B) in section 2.4.

2.3 The Set of Feasible Values of r

In [9], we denoted the set r(DSpace) of feasible values of r by DStretch; we keep
that notation, and also write DStretch+ for r(NDD). Our proof of Theorem 1
shows that, for a given nR loop, a value of r is feasible (corresponds to some
valid loop deformation) if and only if that value and the given link lengths
allow the successful construction of the n¡2 anchored triangles: if some entries
of r are too big or too small, one or more anchored triangles will be impossible
to construct. More precisely, from basic geometry we know that a; b; c ‚ 0
are the side lengths of a possibly degenerate triangle if and only if a • b + c,
b • c+a, and c • a+b; furthermore, the triangle is non-degenerate if and only
if all three inequalities are strict. In our case, taken together these inequalities
for Tri(1); : : : ; Tri(n ¡ 2) give an explicit description of DStretch in terms of
the link lengths l0; : : : ; ln¡1: it is the set of solutions (r(1); : : : ; r(n ¡ 3)) of
the following system of linear inequalities Ineq¾

j . (Here j indicates that Tri(j)
contributed the inequality; Ineq+

j and Ineq¡
j deflne anti-parallel half-spaces,

to which that deflned by Ineq?
j is perpendicular.)
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(a) DStretch of a cer-
tain planar 6R loop
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Fig. 4. The image in the 5-dimensional DStretch for the 8R loop of the deformation
in (b) lies in a 3-dimensional face isometric to the polyhedron in (a).
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Rewritten in matrix format, system (1) becomes DStretch = fr j Tr • bg,
where b = (l0 + l1; : : : ; ¡jln¡2 ¡ ln¡1j) and • is applied termwise. Each row
of T corresponds to an inequality Ineq¾

j in (1), so restricts r to a closed half-
space; thus DStretch is the intersection of at most 3n ¡ 8 closed half-spaces.
The link lengths are flxed, so each r(j) is bounded between zero and the sum
of all link lengths. Thus DStretch is also bounded and is a convex polyhedron.

Example 4. Fig. 4(a) shows DStretch for a planar 6R loop with link lengths
(45; 97; 63; 20; 59; 98). It is a 3-dimensional polyhedron, with faces of codimen-
sion 0 (its interior), 1 (the interiors of its polygonal faces), 2 (the interiors of
its edges), and 3 (its vertices). Since r(1) ‚ 97 ¡ 45, r(3) ‚ 98 ¡ 59, and
r(2) ‚ r(3) ¡ 20 ‚ 19, (1) shows that for this loop DStretch+ = DStretch.
The same polyhedron also arises as the closure of a codimension-2 face
of the 5-dimensional polyhedron DStretch of a planar 8R loop with link
lengths (31; 14; 97; 63; 20; 59; 56; 42), corresponding to deformations (like that
in Fig. 4(b)) with Tri(1) and Tri(6) both degenerate.

Fig. 4(c) shows a special deformation of the 6R loop used in Example 4,
generalized from the concept of \standard triangular form" used by Lenhart
and Whitesides [16]. It is deflned by flnding joint index j satisfying

Pj¡1
i=0 li •

L=2 and
Pj

i=0 li > L=2, where L is the sum of all link lengths, and then using
the subchain from joint 0 (the anchor) to joint j, link j, and the subchain from
joint j + 1 to 0 as three sides of a (possibly degenerate) triangle. It is easy
to see that the r value of such a deformation is a vertex of DStretch, which
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we will call the LW vertex. We will call a deformation an LW deformation if
the r image of the deformation is the LW vertex. Note that other DStretch
vertices are also of great interest; our focus on the LW vertex in this paper is
to facilitate the description of earlier work and illustrate the important roles
of highly singular deformations in path planning.

Our earlier observations show the following.

Theorem 2 (a) DStretch is a convex polyhedron. (b) DStretch+ is the inter-
section of DStretch with f(x1; : : : ; xn¡3) j xj > 0; j = 1; : : : ; n ¡ 3g, and is a
union of open faces of DStretch. ⁄

Since DStretch is a convex polyhedron, by section 2.1 it has a natural
face stratiflcation. As a restriction of DStretch, DStretch+ also has a natural
stratiflcation: its strata are exactly those open faces of DStretch not contained
in (and therefore disjoint from) each of the n ¡ 3 coordinate hyperplanes
f(x1; : : : ; xn¡3) j xj = 0g ‰ Rn¡3. For a planar nR loop that cannot have any
doubly degenerate triangles, DStretch+ = DStretch (see Figs. 1(b) and 2).

Each stratum Q of DStretch+ is characterized by the set of (j; ¾), denoted
by E(Q), for which one of the two or three linear inequalities Ineq¾

j in (1)
associated with triangle j is replaced with the corresponding equality Eq¾

j .
(Now we can explain the labels in Figs. 1(b): they are the values of E(Q)
on the DStretch strata of the 5R loop.) Let e(Q) be the number of elements
in E(Q). For a stratum in DStretch+, e(Q) is also the number of degenerate
anchored triangles that can be induced by the values of r 2 Q; we call e(Q)
the singularity depth of Q. For a loop with generic link lengths, the singularity
depth of a stratum Q is equal to the co-dimension of the stratum; but the
singularity depth of a stratum for a loop with non-generic link lengths may be
difierent from its co-dimension. For example, the top-left subflgure in Fig. 5
shows DStretch for a planar 5R loop with link lengths (2; 3; 4; 2; 3), with its
E(Q) labels; two of the codimension-2 strata (the vertices where r = (1; 5)
and r = (5; 1)) induce three degenerate triangles and have singularity depth
3. The following results show that E(Q) can be used to label the SFace-strata
for DStretch and derive their incidence relations.

Theorem 3 (a) E(Q) 6= E(Q0) if Q 6= Q0. (b) E(Q) ‰ E(Q0) if Q0 ‰ cl(Q).
(c) codim(Q) • e(Q). (d) codim(Q) = e(Q) if e(Q) • 1. ⁄

2.4 The Stratiflcation and Topology of DSpace

For a stratum Q of DStretch, E(Q) identifles which triangles, if any, are de-
generate for any given r 2 Q. In other words, if (j; ¾) 2 E(Q), and r 2 Q, then
Tri(j) is degenerate in any deformation with that value of r, forcing s(j) = 0
for such a deformation. On the other hand, if (j; ¾) =2 Q for any ¾ 2 f+; ¡; ?g,
then Tri(j) cannot be degenerate in any deformation with that value of r, so
s(j) must be + or ¡ for such a deformation. This observation leads to an-
other way to label the open face Q, namely, by an (n¡2)-vector re°ecting the
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Fig. 5. DSpace for a planar 5R loop with link lengths (2; 3; 4; 2; 3).

possible s values of loop deformations with r 2 Q: the jth component is the
symbol § if Tri(j) cannot degenerate, 0 if it must. (The bottom left sub-flgure
of Fig. 5 is labeled in this way.) In fact, DStretch+ with this type of labeling
can also be viewed as a compact visualization of NDD itself: each label is to
be understood as a template in which the §-signs take on all combinations
of values + and ¡, and the difierent ways to flll in each template represent
difierent \convex tiles" of NDD . From this viewpoint, each DStretch+ stratum
Q has 2n¡2¡e(Q) embedded copies in NDD (which are the inverse images by
r), with 0 at the e(Q) entries of s that correspond to the e(Q) degenerate
triangles, and + or ¡ at the remaining n ¡ 2 ¡ e(Q) entries that correspond
to non-degenerate triangles. (Again, refer to Fig. 5 for an example.) We will
show elsewhere that these embedded copies of SFace-strata of DStretch+,
which clearly form a partition of NDD , actually form a stratiflcation (techni-
cal di–culties arise from doubly degenerate triangles, but can be overcome).
We call it the \triangle orientation stratiflcation" STriO .

Theorem 4 If Q is an SFace-stratum of DStretch+, then the STriO-strata
mapped onto Q by r are in one-to-one correspondence via s with 2n¡2¡e(Q),
each stratum being distinguished by its unique pattern of f+; ¡g orientation
signs for the n ¡ 2 ¡ e(Q) nondegenerate triangles. ⁄

The signiflcance of Theorem 4 is that it renders NDD|that is, in every
case \practically all" of DSpace, and in many cases literally all of it|
practically piecewise convex in a strong sense: it shows how NDD can be
decomposed practically into convex tiles labeled by values of s, each of which
is identifled via r with an open face of the polyhedron DStretch.

As to how two STriO-strata can be directly joined, we have the following.
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Theorem 5 The closures of two STriO-strata of DSpace with triangle ori-
entation signs that difier on some set of k triangles intersect each other if and
only if those triangles can become singular simultaneously. ⁄
For instance, on the 3-dimensional, codimension-2 STriO-stratum Q for
the planar 8R loop described in Example 4, s is (0; +; +; +; +; 0); four
codimension-0 STriO-strata (where s is (s(1); +; +; +; +; s(6))) are incident
on Q, and a start deformation in any one of those strata can be joined to a
goal in any other by a 2-segment stratum-wise linear path passing through Q
as in Fig. 4(b) (or at any other point of Q).

Note that for an nR loop, if the r value of the LW vertex corresponds to
a non-degenerate triangle, then the loop has two LW deformations with the
same shape but opposite orientations. In this case, each LW deformation has
singularity depth n ¡ 3 and connects half the convex tiles of NDD . If the LW
triangle form degenerates into a line segment, then the loop has only one LW
deformation, of singularity depth n ¡ 2, which connects all tiles of NDD .

Following [22], we say a planar nR loop (n > 4) has m long links provided
m is the largest number for which there are link lengths lj1 ; lj2 ; : : : ; ljm

(0 •
j1 < ¢ ¢ ¢ < jm • n ¡ 1) with the sum of any two of them being strictly greater
than half the sum of all the loop’s link lengths. Easily, if a loop has m long
links, then m 2 f0; 2; 3g. Prior results [16, 10] show that DSpace for a planar
nR loop has two connected components or one, according as the loop has 3
long links or fewer. The 5R loops in Fig. 5 and Figs. 1(b) and 2 have 0 and
3 long links respectively; our flgures show the correct reconstruction of the
DSpace topology from the strata. Call an anchored triangle invertible if it is
singular in some deformations. Such triangles are key to understanding the
connectivity of DSpace, and lead to an alternative proof (short, but not short
enough to include here!) of the DSpace connectivity results of [22, 16, 10].

Theorem 6 (a) If a planar nR loop has 0 or 2 long links then every anchored
triangle is invertible. (b) If lj1 , lj2 and lj3 are three long links for a planar nR
loop, then all but one anchored triangle is invertible, that being Tri(j2). ⁄

3 Path Planning

3.1 Generation of Closure Deformations

We know of no prior closure deformation generation methods designed specif-
ically for planar nR loops, though of course conflguration generation methods
for general closed chains [14, 7, 4, 1] apply in particular to planar nR loops.
The more recent methods in [4] (random loop generator) and [1] (iterative
constraint relaxation), designed with chains of many links in mind, consider-
ably improve performance over earlier methods; but they still have di–culty
for loops with many links (say, over 100), nor do they guarantee that every at-
tempt will generate a closure deformation. Both these di–culties are overcome
by using our new formulation of the loop closure constraint.
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Our main task here is to compute a valid set r of diagonal lengths for a loop
with given link lengths. Since all constraints on r are linear inequalities Ineq¾

j

(or equalities Eq¾
j , in case we wish to force r into particular strata of DStretch),

we can easily flnd r with linear programming (LP ). The problem size of an
LP formulation for r is linear in n: the numbers of unknowns and constraints
are both in £(n). Although there are as yet no theoretical bounds on the
worst-case running time of LP , in practice [19] LP is considered a mature
fleld with many e–cient algorithms. We have also developed e–cient methods
other than LP (described in [8]) that take advantage of the kinematics of a
planar nR loop and the particular simplicity of the constraints. Our fastest
generation methods have linear time complexity £(n), which is optimal.

3.2 Connection of Closure Deformations

To the best of our knowledge, there are two complete planners for connecting
deformations of a planar nR loop, ignoring collisions. The line tracking plan-
ner [16] of Lenhart and Whitesides generates a path in time O(n) by using
simple line tracking motions to move two given query deformations to their
\standard triangle form", in two opposite orientations if needed, and then
to move both triangle deformations to an appropriate singular deformation
that allows the change of the triangle orientations. For some start and goal
deformations, only one standard triangle form needs to be passed through.
The accordion planner [22] of Trinkle and Milgram generates a smooth path
between given deformation pairs and empirically exhibits cubic running time.
It is also known [22, 20] that each component of DSpace for a planar nR loop
with 3 long links is a (n¡3)-dimensional torus parametrized by joint angles of
the short links, so valid paths in a given component can be generated by lin-
ear interpolation of those angles (modulo 2…). Path planning for a planar nR
loop using our new parameters is considerably simplifled by the nice geometry
of the DSpace, because (viewed through r) all strata and their closures are
convex, so two query deformations in the closure of a single stratum can be
joined by a path on which r linearly interpolates their r values (or by a Man-
hattan path on which only one or a few entries of r change on each segment).
If two deformations are in the same component of DSpace (easily checked), we
can join them by a piecewise linear path once we determine critical singular
deformations through which to pass successively between strata. We sum this
up in the nearly self-explanatory algorithm Fig. 6, where only Step 7 may
require further comment.

Brie°y, there are many ways to compute critical intermediate deforma-
tions. Assume the query deformations have difierent orientations for k trian-
gles. Fig. 7 illustrates one extreme: we compute k codimension-1 strata, one
for each triangle that needs to be inverted, then pass through them one at
a time; feasibility is guaranteed by standard facts about stratifled manifolds
(cf. [6]). For a planar nR loop, we need at most n ¡ 2 singular deformations
on codimension-1 strata, one for each triangle, so our path will be piecewise
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1. flnd the number and indices of the triangles, in which the two given
deformations have opposite orientations

2. if the deformations do not have opposite orientation for any triangle
3. pathExistence=true; criticalIntCfgs=null;
4. elseif (the loop has 3 long links) and . . .

(the two cfgs have opposite orientations for the non-invertible triangle)
5. pathExistence=false;
6. else
7. pathExistence=true; flnd critical intermediate cfgs;
8. end;

Fig. 6. Algorithm for Connecting Two Closure Deformations of a Planar Chain

linear with at most n ¡ 1 segments, each on the closure of one codimension-0
stratum. With this approach, the running time of our algorithm is determined
by the time needed to generate O(n) singular deformations of depth 1, and
has an upper bound of O(n2) when using deformation generation methods
with linear running time [8].

Alternatively, we can look for a stratum of singularity depth at least k that
corresponds to those triangles and directly joins the two strata. The extreme
of this approach is to use the LW deformations mentioned earlier: we can
(ignoring collisions) connect any two query deformations of an nR loop in
the same component of DSpace by using at most 2 critical deformations, one
a LW deformation and the other a deformation singular in (at least) the
unique non-singular anchored triangle (if one exists) of the LW deformation.
Fig. 8(a) shows the two critical deformations (subgoals), the flrst subgoal being
the LW deformation, as used to connect the same start and goal of a 5R loop

200 200 200 200

100 100 100 100

0
0 100 200

0
0 100 200

0
0 100 200

0
0 100 200

r(1) r(1) r(1) r(1)

r(2) r(2) r(2) r(2)

start

start

end segment 1

begin segment 2 begin segment 3 begin segment 4

end segment 2

end segment 3 goal

goal
(+,+,+)→(0,+,+) (0,+,+)→(−,0,+) (−,0,+)→(−,−,0) (−,−,0)→(−,−,−)

Fig. 7. Above, we show a piecewise-linear path in DSpace for a planar 5R loop link
lengths [100; 90; 80; 75; 50], connecting the closure deformations (80; 70; +; +; +) and
(125; 110; ¡; ¡; ¡) by traversing four codimension-0 STriO-strata (each identifled
via r with a copy of DStretch, and labeled with its value of s), crossing common
boundary pieces of higher codimension. Below, we picture the loop itself, in its
deformations at the beginning and end of each segment.
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(a) path1 (b) path2

Fig. 8. Two paths for connecting the same start and goal deformations as in Fig. 7,
using two singular r values|one the LW vertex (for the triangle deformations)|in
two difierent orders, along with appropriate s values.

as in Fig. 7. Clearly the running time for generating one such path, again
determined by the generation time of the two special critical deformations, is
£(n), which is optimal.

In Fig. 8(b), the same problem as in Figs 7 and 8(a) is solved with the
LW deformation as the second subgoal: in fact, subgoal 1 (2) in Fig. 8(a) has
the same r value as subgoal 2 (1) in Fig. 8(b). Recall that for a loop with
given link lengths, a feasible r value completely specifles which triangles are
singular or not. Denote by dt(r) the (possibly empty) set of the indices of
the anchored triangles that are singular under the given value of the diagonal
lengths r. So to connect two deformations in the same connected component
but with opposite orientations in k triangles of indices fj1; j2; : : : ; jkg, we need
to flnd r values fr1; r2; : : : ; rmg, such that fj1; j2; : : : ; jkg µ Sm

i=1 dt(ri). For
such an r set having m members, these r values can be used in arbitrary
orders, along with appropriate s values; we obtain m! difierent but related
paths. An example with m = 2 is shown in Fig. 8.

Our connection method is clearly complete and guarantees to flnd a path
between any two closure deformations in one connected component. The com-
plexity of this algorithm depends on the complexity of the generation of the
critical singular deformations. But we note that the singular deformations can
be reused. If it is known that a large number of path planning problems will
be performed for a flxed loop, it will be worth preprocessing the loop to flnd
critical deformations, be they the LW deformation or deformations of lower
singularity depths. Thereafter we can solve any connection problem for any
two deformations in constant time £(1) by using the LW deformation, or in
time O(n) by picking appropriate critical singular depth 1 deformations.

3.3 Sampling-Based Collision-Free Closure Path Planning

The closure deformation connection methods just described do not consider
the collision free constraint, so may involve interference between the links, as
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(a) cl(S+++) (b) cl(S¡++) (c) cl(S+¡+) (d) cl(S¡¡+)

Fig. 9. DSpace for the 5-bar loop with 3 long links already familiar from Fig. 2.

in Fig. 7. Extensive research by the motion planning community has made
it clear that the collision free constraint is very di–cult to deal with, and
that it is very hard to describe CFree and CObstacle analytically for general
obstacles. Recent successes of randomized path planners suggest that sampling
based planners like PRM and RRT may be an important framework in which
to integrate e–cient node generation and connection methods (including ours
and previous ones) while also dealing with such di–cult factors in planning
as high dimensionality and complicated linkage constraints. Our preliminary
strategy has been to capture the stratum connectivity with a roadmap or trees,
from which we construct the global connectivity of DFree and solve for paths
for given query deformation pairs. Fig. 9 suggests the daunting complexity of
this problem. The shaded areas are the parts of DObstacle in the copies of
DStretch that make up half of DSpace (the other half is its mirror image). The
unobstructed part of the (+; ¡; +) stratum has two connected components,
which can however be connected via the (+; +; +) stratum, as in Fig. 2(b-d).

4 Summary

In this paper, we used our new parameters|some inter-joint distances and
triangle orientation data|to study the stratifled deformation space and e–-
cient path planning for a plainer closed chain with revolute joints. Instead of
formulating the loop closure constraint as nonlinear equations in joint angles,
we break a loop into an open chain of triangles then use the triangle inequality
repeatedly to formulate the constraint as a set of linear inequalities. This new
formulation endows the deformation space with a nice geometry; for a generic
nR loop it is a stratifled space of convex strata. This geometry (and its gener-
alizations for more complex kinematic systems) greatly simplifles kinematics
related issues including the generation and connection of closure deformations.
In efiect, our new parameters make path planning for a planar nR loop (or a
spatial nS loop) no more di–cult than path planning for an open chain.
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