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Summary. This paper presents a method of computing efficient and natural-
looking motions for humanoid robots walking on varied terrain. It uses a small
set of high-quality motion primitives (such as a fixed gait on flat ground) that have
been generated offline. But rather than restrict motion to these primitives, it uses
them to derive a sampling strategy for a probabilistic, sample-based planner. Results
in simulation on several different terrains demonstrate a reduction in planning time
and a marked increase in motion quality.

1 Introduction

In this paper we present a method of planning efficient and natural-looking
motions for humanoid robots on varied terrain. One thing that makes this
problem difficult is that although humanoids have many degrees of free-
dom (dof), we do not know in advance which of these dof are actually useful,
nor which contacts may be needed. On easy terrain like flat ground or stairs of
fixed height, the motion of a humanoid is lightly constrained, most of its dof
are redundant, and only feet need contact the ground. On hard terrain like
steep rock or urban rubble, the motion of a humanoid is highly constrained,
most of its dof are essential, and additional contacts (hands, knees, shoul-
ders) might be required for balance. On varied terrain, the number of relevant
dof and the types of required contacts may change from step to step.

Consequently, planners that simplify the problem by considering a subset
of the robot’s dof work well on easy terrain, but are not flexible enough to
handle varied terrain. For example, one strategy for a humanoid on mostly
flat ground is to precompute a library of feasible steps [22]. Each step is a con-
tinuous trajectory that places one foot in a new location relative to the other.
Motions are constructed as a sequence of these steps. Because this only re-
quires searching a graph, rather than a high-dimensional configuration space,
it can be done quickly. More importantly, because the steps are precomputed,
the resulting motion is efficient and robust, and looks natural. However, when
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the ground is not flat – in particular, when hands are required for balance –
this approach may not be able to find a feasible motion.

Conversely, planners that consider all of the robot’s dof work well on hard
terrain, but do not generate efficient or natural-looking motions (when this
is possible) on varied terrain. For example, one strategy for a humanoid on
severely uneven ground (based on earlier work for a free-climbing robot [5])
begins by identifying a number of potentially useful contacts [16]. Each map-
ping of hands or feet to contacts is a stance, associated with a (possibly empty)
set of feasible configurations that satisfy all motion constraints. The robot can
take a step from one stance to another if they differ by a single contact and if
they share a feasible configuration, called a transition. The planner proceeds
in two stages: first, it generates a candidate sequence of contacts by find-
ing transitions between stances; then, it refines this sequence into a feasible,
continuous trajectory by finding paths between subsequent transitions. Prob-
abilistic, sample-based algorithms are used to find both transitions and paths.
This approach is fast on irregular and steep terrain, because in this situation
the robot’s motion is most constrained just as it makes or breaks a contact.
But when the ground is flat, this approach takes longer than the one of [22],
and may generate needless motions of the arms or other dof that are not
required for balance. These motions are hard to eliminate in post-processing.

Rather than select one approach or the other, our planner combines the
strengths of both. First, we generate a small set of high-quality motion prim-
itives (similar to [22]), that might include a single step on flat ground, or an
arm movement that places a hand on a wall for balance. Here, these primitives
are produced by a lengthy off-line precomputation, but they might also be de-
signed by hand or even captured or learned from examples of human motion.
We record each motion primitive as a nominal path through the robot’s config-
uration space (a joint-angle trajectory). Then, we use the two-stage strategy
of [5,16] to plan motions of the humanoid on-the-fly. But instead of sampling
across all of configuration space to find transitions between stances and paths
between transitions, we sample in a growing distribution around the nominal
path associated with a chosen motion primitive. Although still preliminary,
our simulation results demonstrate a reduction in planning time and a marked
increase in motion quality3 for a humanoid walking on varied terrain.

2 Related work

Motion primitives and other types of maneuvers have been applied widely to
robotics and digital animation. Four general strategies have been used:

Record and playback. This strategy restricts motion to a library of maneuvers.
Natural-looking humanoid locomotion on mostly flat ground can be planned as
a sequence of precomputed feasible steps [22]. Robust helicopter flight can be
3 Exactly how motion quality should be measured is an open question, beyond the

scope of this paper. Here, we define quality as inversely proportional to a linear
combination of path length and sum-squared distance from an upright posture.
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planned as a sequence of feedfoward control strategies (learned by observing
skilled human operators) to move between trim states [10–12, 31]. Robotic
juggling can be planned as a sequence of feedback control strategies [8]. The
motion of peg-climbing robots can be planned as a sequence of actions like
“grab the nearest peg” [3]. In these applications, a reasonably small library of
maneuvers is sufficient to achieve most desired motions. For humanoid robots
on varied terrain, such a library may grow to impractical size.

Warp, blend, or transform. Widely used for digital animation, this strategy
also restricts motion to a library of maneuvers, but allows these maneuvers to
be superimposed or transformed to better fit the task at hand. For example,
captured motions of human actors can be “warped” to allow characters to
reach different footfalls [40] or “retargetted” to control characters of differ-
ent morphologies [13]. Of course, for a digital character it is most important
to look good while for a humanoid robot it is most important to satisfy hard
motion constraints. So although some techniques have been proposed to trans-
form maneuvers while maintaining physical constraints [34, 39], this strategy
seems better suited for animation than robotics.

Model reduction. This strategy plans overall motion first, following this mo-
tion with a concatenation of primitives. For example, another way to generate
natural-looking humanoid locomotion on flat ground is to approximate the
robot as a cylinder, plan a 2-d collision-free path of this cylinder, and follow
this path with a fixed gait [19–21, 32]. A similar method is used to plan the
motion of nonholonomic wheeled vehicles [23, 24]. A related strategy plans
the motion of key points on a robot or digital actor (such as the center of
mass or related ground reference points [33]), tracking these points with an
operational space controller [38]. These approaches work well when it does not
matter much where a robot or digital actor contacts its environment. When
the choice of contact location is critical, as is often the case for humanoids on
varied terrain, it makes more sense to compute a sequence of footfalls first.

Bias inverse kinematic solutions. Like model reduction, this strategy first
plans the motion of key points on a robot or digital actor, such as the location
of hands or feet. But instead of a fixed controller, a search algorithm is used
to compute a pose of the robot or actor at each instant that tracks these
points (an inverse kinematic solution). One approach is to choose an inverse
kinematic solution according to a probability density function learned from
high-quality example motions [15, 28, 29, 41]. The set of examples give the
resulting pose a particular “style.” In fact, we take a similar approach in this
paper, planning steps for a humanoid by sampling waypoints in a growing
distribution around high-quality nominal paths.

3 Background

Our planner extends a similar one for humanoid robots [16], which was based
on earlier work for a free-climbing robot [5]. Here, we summarize our basic
approach and describe the limitations we address by using motion primitives.
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(a) (b)

Fig. 1. (a) The humanoid robot hrp-2 [18]. (b) Example of varied terrain.

3.1 Motion constraints

We consider the humanoid hrp-2 (Fig. 1(a)). A configuration q consists of 6
parameters defining the position and orientation of the torso and a list of 30
revolute joint angles. The set of all such q is the configuration space, denotedQ,
of dimensionality 36. We consider terrain that might include a mixture of flat,
sloped, or rocky ground (Fig. 1(b)). We assume that this terrain and all robot
links are perfectly rigid. We also assume that we are given in advance a set
of links (such as hands, feet, or knees) that are allowed to touch the terrain.
We call the placement of a link on the terrain a contact, and fix the position
and orientation of the link while the contact is maintained. We call a set of
simultaneous contacts a stance, denoted by σ. Consider a stance σ with n ≥ 1
contacts. The feasible space Fσ is the set of all feasible configurations of the
robot at σ. To be in Fσ, a configuration q must satisfy several constraints:

Contact. The n contacts form a linkage with multiple closed-loop chains, so q
must satisfy inverse kinematic equations. Let Qσ ⊂ Q be the set of all con-
figurations q that satisfy these equations. This set is a possibly empty sub-
manifold of Q of dimensionality 36− 6n, which we call the stance manifold.

Equilibrium. To balance at a fixed stance σ, hrp-2 must apply forces at con-
tacts in σ that compensate for gravity without slip. For valid forces to exist,
hrp-2’s center of mass (cm) must lie above its support polygon. On varied ter-
rain, this polygon does not always correspond to the base of hrp-2’s feet [5–7].
So we model each contact as a set of frictional points, and compute the sup-
port polygon as in [6,16]. When the cm lies above this polygon, we also check
that joint torques achieving the required contact forces are within bounds.

Collision. In addition to satisfying joint angle limits, the robot must avoid
collision with the environment (except at contacts) and with itself [14, 37].

3.2 Motion planning

We assume hrp-2 moves from one place to another by taking a sequence
of steps. Each step is a continuous motion at a fixed stance that ends by
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making or breaking a single contact. In particular, suppose the robot begins
at a configuration q ∈ Fσ at a stance σ. A single step from q consists of
three parts: first, a contact that is made or broken to move from σ to a new
stance σ′; second, a configuration q′ ∈ Fσ ∩ Fσ′ , which we call a transition,
that is feasible at both σ and σ′; third, a feasible path in Fσ from q to q′.

Following the approach of [5, 16], we make these three choices hierarchi-
cally. To find a contact, we randomly sample potential placements of the
robot’s links in the terrain (or select a placement in σ to release). We use
heuristics to decide which placement is most likely to lead toward the goal.
To find a transition given σ′, we randomly sample configurations in Qσ (or
in Qσ′ if σ ⊂ σ′) and reject them if they are not in Fσ ∩ Fσ′ . We use the
combination of a bounding-volume technique similar to [9] and an iterative
Newton-Raphson method to sample configurations in Qσ (which has zero
measure in Q). To find a path given q′, we use a variant of the probabilis-
tic roadmap (prm) algorithm called sbl [36]. This algorithm is bidirectional
(growing trees, as in [25], from both q and q′) and lazy (delaying the creation
of local paths until a candidate sequence of milestones is found).

3.3 Current limitations

Our search strategy postpones finding one-step paths (a costly computation)
until after finding transitions and contacts [5, 16]. It works well for hrp-2 on
irregular and steep terrain because in this situation, the robot’s motion is
most constrained just as it makes or breaks a contact. In particular, we have
observed in our experiments that if q ∈ Fσ ∩ Fσ′ and q′ ∈ Fσ ∩ Fσ′′ exist,
then a path between q and q′ in Fσ likely also exists.

However, because we randomly sample each transition and use prm to
plan each one-step path, the motions we generate are feasible (given an ac-
curate terrain model) but not necessarily high-quality. For example, when
hrp-2 walks on terrain that is not irregular and steep, its motion is lightly
constrained. Each step we generate might contain strange or erratic motions of
the arms and legs. These motions are difficult to eliminate in post-processing.

Also, because we randomly sample each contact, we might end up trying
difficult steps when simpler ones would have led to the goal as well. For ex-
ample, the robot might reach a stance σ associated with a feasible space Fσ

containing a narrow passage. With only a small perturbation of the contacts
at σ, this narrow passage is likely to disappear [17]. So although additional
steps might still be possible, they would be easier to compute if we had made
a better choice of contacts at σ.

4 Generating motion primitives

We address the limitations of our planner by using a library of motion prim-
itives. Each primitive is a single step of very high quality. In this section, we
describe how we generate primitives. In the following section, we will describe
how they guide our selection of paths, transitions, and contacts.
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(a)

(b)

Fig. 2. Two primitives on flat ground, to (a) place a foot and (b) remove a foot.
The support polygon – here, just the convex hull of supporting feet – is shaded blue.

Currently, it is the responsibility of the user to decide which primitives to
include in the library. First, we need to identify a small but representative
set of steps to be learned and to specify start and goal stances (differing by
a single contact) for each one. These steps should be both important (often
repeated) and broadly applicable (similar to a wide variety of other steps). For
example, we might choose to include several consecutive steps on flat ground,
each placing or removing a foot (Fig. 2). Next, we need to define a weighted
set of criteria to judge the quality of each step. For example, we might choose
to minimize path length, torque, energy, or the amount of deviation from
an upright posture. Finally, we need to decide whether to accept or reject
a candidate primitive, because we are not guaranteed that our optimization
criteria correspond to our aesthetic notion of what is “natural.”

It is the responsibility of the planner to actually compute each primitive.
First, we generate an initial trajectory between the given start and goal stances
by randomly sampling a feasible transition and creating a path to reach it
using prm, as in [5,16]. Then, we optimize this trajectory with respect to the
given objective function using a standard nonlinear optimization package [26].
This entire process is an off-line precomputation; several hours were required
to generate the two example primitives in Fig. 2.

The generation of motion primitives has not been the main focus of our
work (this paper concerns their application to planning), so many improve-
ments may be possible. For example, we expect better results to be obtained
by using the method of optimization proposed by [4]. Likewise, we might use a
learned classifier to decide (without supervision) whether candidate primitives
look natural, as in [35]. Finally, we might automate the selection of primitives
to include in our library by learning a statistical model of importance (similar
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to location-based activity recognition [27]) or applicability after perturbation
(similar to prm planning with model uncertainty [30]).

We record each primitive in our library as a nominal path

u : t ∈ [0, 1] → u(t) ∈ Q

in configuration space that does one of two things:

• Adds a contact. For some σ and σ′ such that σ ⊂ σ′, u is a feasible path
in Fσ from u(0) ∈ Fσ to u(1) ∈ Fσ ∩ Fσ′ .

• Removes a contact. For some σ and σ′ such that σ ⊃ σ′, u is a feasible
path in Fσ from u(0) ∈ Fσ to u(1) ∈ Fσ ∩ Fσ′ .

We will denote the start and goal stances for each primitive u by σu and σ′
u,

respectively. In general, u will only define a feasible step between σu and σ′
u,

but we will see in the next section that it can still be used to help guide our
choice of path, transition, and contact to reach other stances.

5 Using primitives for planning

We use motion primitives to help our planner generate each step. We do this
at three levels: finding a path (given a transition and a final stance), finding
a transition (given only the final stance), and finding a contact (in order to
define the final stance). In each case, first we transform the primitive to better
match the step we are trying to plan, then we apply the transformed primitive
to bias the sampling strategy used by our planner.

5.1 Finding paths

Consider the robot at an initial configuration qinitial ∈ Fσ at an initial stance σ.
Assume that we are given a final stance σ′ and a transition qfinal ∈ Fσ ∩ Fσ′

(recall qfinal is a configuration feasible at both σ and σ′). Also assume that we
are given an appropriate primitive u ⊂ Q (as described in Section 4). We want
to use u to guide our search for a path from qinitial to qfinal in Fσ. As before,
we use sbl (a variant of prm) to grow trees from root configurations [36]. But
rather than root these trees only at qinitial and qfinal, we root them at addi-
tional configurations (similar to [1]) sampled according to the primitive u.

Transforming the primitive to match qinitial and qfinal. Although we assume u
is similar to the step we are trying to plan, it will not be identical. So first,
we transform u so that it starts at qinitial and ends at qfinal. We have chosen
to use an affine transformation of the form

û(t) = A (u(t)− u(0)) + qinitial (1)

that maps the straight-line segment between u(0) and u(1) to the segment
between qinitial and qfinal. In other words,



8 Kris Hauser, Tim Bretl, Kensuke Harada, and Jean-Claude Latombe

qinitial

qfinal

u(0)

u(1)

nominal path u

transformed path û

(a)

q1 (qinitial)

q5 (qfinal)

q2

q3

q4

q̂4

(b)

q1

q5

q2

q3

q4

(c) (d)

Fig. 3. Using a primitive to guide path planning. (a) Transforming a motion prim-
itive to start at qinitial and end at qfinal. (b) Sampling root milestones in Fσ near
equally spaced waypoints along û. (c) Growing trees to connect neighboring roots.
(d) The resulting path, which if possible is close to û (dotted).

û(0) = A (u(0)− u(0)) + qinitial û(1) = A (u(1)− u(0)) + qinitial

= 0 + qinitial = (qfinal − qinitial) + qinitial

= qinitial = qfinal

In particular, we select A closest to the identity matrix, minimizing

min
A

∑
i,j

(Aij − δi,j)2 such that A (u(1)− u(0)) = qfinal − qinitial

where δij = 1 if i = j and 0 otherwise. We compute A in closed form as

A = I +
((qfinal − qinitial)− (u(1)− u(0))) (u(1)− u(0))T

‖u(1)− u(0)‖22
.

We can visualize this transformation as in Fig. 3(a). First, u is translated to
start at qinitial. Then, the farther we move along u (the more we increase t),
the closer û is pushed toward the segment from qinitial to qfinal.
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Sampling root milestones. Let q1, . . . , qn be configurations evenly distributed
along û from qinitial to qfinal (Fig. 3(b)). For each i = 1, . . . , n, we test
if qi ∈ Fσ. If so, we add qi as a root milestone in our roadmap. If not, we
repeatedly sample other configurations in a growing neighborhood of qi until
we find some feasible q′i ∈ Fσ, which we add as a root instead of qi.
Connecting neighboring roots with sampled trees. For i = 1, . . . , n− 1, we
check if the root milestone qi can be connected to its neighbor qi+1 with
a feasible local path (as in [16]). If not, we add the pair of roots (qi, qi+1)
to a list R. Then, we apply prm to grow trees between every pair in R. For
example, in Fig. 3(c) we add (q2, q3) and (q4, q5) to R and grow trees to con-
nect both q2 with q3 and q4 with q5. We process all trees in parallel. So at
every iteration, for each pair (qi, qi+1) ∈ R, we first add m milestones to the
trees at both qi and qi+1 (in our experiments, we set m = 5). Then, we find
the configurations q connected to qi and q′ connected to qi+1 that are closest.
If q and q′ can be connected by a local path, we remove (qi, qi+1) from R.
When we connect all neighboring roots, we return the resulting path; if this
does not happen after a fixed number of iterations, we return failure. Just like
our original implementation, this approach will find a path between qinitial

and qfinal whenever one exists (given enough time). However, since we seed
our roadmap with milestones that are close to u, we expect the resulting mo-
tion to be similar (and of similar quality) to this primitive whenever possible
(Fig. 3(d)), deviating significantly from it only when necessary.

5.2 Finding transitions

Again consider the robot at a configuration qinitial ∈ Fσ at a stance σ. But
now, assume that we are only given a final stance σ′, so we use a primitive u
to guide our search for a transition before we plan a path to reach it.
Transforming the primitive to match σ and σ′. Since we do not know qfinal,
we can not use the same transformation (1) that we used for planning paths.
Instead, we choose a rigid-body transformation of the form

û(t) = Au(t) + b (2)

that maps the nominal stances σu and σ′
u (associated with the primitive u)

as closely as possible to the stances σ and σ′.
Recall that a stance consists of several contacts, each placing a link of the

robot on the terrain. If we model the surface of the terrain and all robot links
as a triangular mesh, then we can define the location of each placement by a
finite number of points ri ∈ R3. For example, the face-face contact between
a foot and the ground might be defined by the vertices r1, r2, and r3 of a
triangle. We consider these points to be attached to the robot, so if the foot
is placed against a different face in the terrain, the points r1, r2, and r3 move
in R3 but remain in the same location relative to the foot. We will use these
points to define our mapping between stances.

In particular, let ri ∈ R3 for i = 1, . . . ,m be the set of all points defining
the contacts in both σu and σ′

u, and let si ∈ R3 for i = 1, . . . ,m be the set
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of all points defining the contacts in both σ and σ′. (We assume u has been
chosen so that both sets have the same number of points.) Then we choose
the rotation matrix A and translation b in (2) that minimize

min
A,b

∑
i

‖Ari + b− si‖22.

We can compute A and b in closed form [2]. But, we only consider rotations A
about the gravity vector to avoid tilting the robot into an unstable orientation.
Sampling a transition. As before, we sample configurations q ∈ Qσ, keeping
them if q ∈ Fσ ∩ Fσ′ . But rather than sample configurations completely at
random, we sample them in a growing neighborhood of û(1). We expect a
well-chosen transition to further improve the quality of the path to reach it.

5.3 Finding contacts

Once more, consider the robot at a configuration qinitial ∈ Fσ and a stance σ.
But now, assume we are given neither a final stance nor a transition, but
only a primitive u. If u removes a robot link from the terrain, we immediately
generate a final stance σ′ by removing the corresponding contact from σ. But
if u places a link in the terrain, we use it to guide our search for a new contact.
Transforming the primitive to match σ. We use the same transformation (2)
to construct û as for finding transitions. But here, we compute A and b to map
only σu to σ, since we do not know σ′. We use this transformation to adjust
the placement of the new contact given by u. Let ri ∈ R3 for i = 1, . . . ,m be
the set of points defining this contact. Then the transformed contact is given
by r̂i = Ari + b for i = 1, . . . ,m.
Sampling a contact. We define a sphere of radius δ, centered at (1/m)

∑
i r̂i.

We increase δ until the intersection of this sphere with the terrain is non-
empty (initially, we set δ approximately the size of hrp-2’s foot). We randomly
sample a placement of the points r̂i on the surface of the terrain inside the
sphere, by first sampling a position of their centroid s ∈ R3 on the surface,
then sampling a rotation of r̂i about the surface normal at s. We check that
the contact defined by this placement has similar properties (normal vector,
friction coefficient) to the contact defined by u. If so, we add it to σ to form σ′.
If not, we reject it and sample another placement.

5.4 Deciding which primitive to use

It only remains to decide which primitive u should be used, given an ini-
tial stance σ and configuration qinitial. We have experimented with a variety
of heuristics. For example, we might pick the primitive that most closely
matches σu with σ (in other words, that minimizes the error in a transforma-
tion of the form (2)). Likewise, we might pick the primitive that most closely
matches σ′

u with the actual terrain. However, the best approach is still not
clear, and this issue remains an important area for future work.
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6 Results

An example of climbing a single stair. With each additional part of a step that
we compute using a primitive, we add to the quality of the result. For example,
consider the motion of hrp-2 in Fig. 4 to climb a single stair of height 0.3m
(just below the knee). This motion was planned from scratch, by randomly
sampling contacts and transitions and by using prm to generate paths. The
robot does not look natural – its arm and leg motions are erratic, and its
step over the stair is needlessly long. To improve this motion, we applied the
two primitives shown in Fig. 2 (steps on flat ground). Fig. 5 shows the result
of using these primitives to plan each path. Some erratic leg motions are
eliminated, such as the backward movement of the leg in the second frame.
The erratic arm motions remain, however, because the transition in the fourth
frame is the same (still randomly sampled). Fig. 6 shows the result of using
primitives to adjust this transition as well as to plan paths, eliminating most of
the erratic arm motions. Finally, Fig. 7 shows the result of using primitives to
select contacts well as plan transitions and paths. The chosen contact resulted
in a much easier step, eliminating the extreme lean in the fifth frame.
Planning time and motion quality for stairs of different heights. In our exper-
iments, we have observed that planning time remains low and motion quality
remains high even when we use a primitive to plan a step that is quite dif-
ferent. For example, we adapted the same two primitives in Fig. 2 to stairs
of height 0.2m and 0.4m as well as 0.3m. Fig. 8 shows the results, averaged
over five runs. Quality is measured by an objective function that penalizes
both path length and deviations from an upright posture (lower values indi-
cate higher quality). For comparison, we report the minimum objective value
achieved after a lengthy off-line optimization. These results demonstrate that
our use of primitives provides a modest reduction in planning time but signifi-
cantly improves motion quality. Note also that both time and quality degrade
gracefully as the step we are planning deviates further from the primitive.
A variety of other examples. We have tested our planner in many other exam-
ple environments. Fig. 9 shows hrp-2 on uneven terrain (using the primitives
in Fig. 2), in which the highest and lowest point differ by 0.5m. Fig. 10 shows
hrp-2 climbing a ladder with rungs that have non-uniform spacing and that
deviate from horizontal by up to 15◦. The primitives for this example were
generated on a ladder with horizontal, uniformly spaced rungs. Fig. 11 shows
hrp-2 making several sideways steps among boulders, using the hands for
support. Here, the primitives were generated by stepping sideways on flat
ground while pushing against a vertical wall. Fig. 12 shows hrp-2 traversing
very rough terrain with slopes up to 40◦. This motion was generated with a
larger set of primitives (including steps of several heights, a pivot step, and a
high step using the hand for support). In all of these examples, contacts were
sampled on-the-fly (using motion primitives), not placed by hand. Planning
for the first three examples took about one minute on a 1.8 GHz pc. The
fourth took example about eight minutes.
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Fig. 4. Stair step planned entirely from scratch.

Fig. 5. Primitives guide path planning, reducing unnecessary leg motions.

Fig. 6. Primitives guide transition sampling, reducing unnecessary arm motions.

Fig. 7. Primitives guide the choice of contact, resulting in an easier step.



Motion primitives in probabilistic sample-based planning 13

Stair From scratch Adapt primitive Optimal
height Time Objective Time Objective objective

0.2m 8.61 5.03 5.42 3.04 2.19
0.3m 10.3 4.67 4.08 2.31 2.17
0.4m 12.2 5.15 10.8 3.27 2.55

Fig. 8. Planning time and objective function values for stair steps, averaged over 5
runs.

Fig. 9. A planar walking primitive adapted to slightly uneven terrain.

Fig. 10. A ladder climbing primitive adapted to a new ladder with uneven rungs.

7 Conclusion

In this paper we described a method of computing efficient and natural-looking
motions for humanoids walking on varied terrain. We used a set of motion
primitives, generated offline, to derive a sampling strategy for a probabilistic,
sample-based planner. Our experimental results on several different examples
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Fig. 11. A side-step primitive using the hands for support, adapted to a terrain
with large boulders. Hand support is necessary because the robot must walk on a
highly sloped boulder.

Fig. 12. A motion on steep and uneven terrain generated from a set of several
primitives. A hand is being used for support in the third configuration.

demonstrated a reduction in planning time and a marked increase in motion
quality. However, much work remains to be done. For example, our heuristics
for deciding which primitives to generate and for choosing primitives appro-
priate to each step could be improved. One might even consider the use of
several primitives concurrently, or the use of a primitive that encodes several
steps rather than just a single step. Finally, even though primitives increase
motion quality, a better method of post-processing would improve our results.
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