RESAMPL: A Region-Sensitive Adaptive
Motion Planner

Samuel Rodriguez, Shawna Thomas, Roger Pearce, and Nancy M. Amato

Parasol Lab, Department of Computer Science, Texas A&M University, College
Station, TX USA {sor8786,sthomas,rap2317,amato}@cs.tamu.edu

Abstract: Automatic motion planning has applications ranging from traditional
robotics to computer-aided design to computational biology and chemistry. While
randomized planners, such as probabilistic roadmap methods (PRMs) or rapidly-
exploring random trees (RRT), have been highly successful in solving many high
degree of freedom problems, there are still many scenarios in which we need better
methods, e.g., problems involving narrow passages or which contain multiple regions
that are best suited to different planners.

In this work, we present RESAMPL, a motion planning strategy that uses local
region information to make intelligent decisions about how and where to sample,
which samples to connect together, and to find paths through the environment.
Briefly, RESAMPL classifies regions based on the entropy of the samples in it, and
then uses these classifications to further refine the sampling. Regions are placed in
a region graph that encodes relationships between regions, e.g., edges correspond
to overlapping regions. The strategy for connecting samples is guided by the region
graph, and can be exploited in both multi-query and single-query scenarios. Our
experimental results comparing RESAMPL to previous multi-query and single-query
methods show that RESAMPL is generally significantly faster and also usually requires
fewer samples to solve the problem.

1 Introduction

The general motion planning problem consists of finding a valid path for
an object from a start configuration to a goal configuration. Traditionally,
a valid path is any path that is collision-free, e.g., avoiding collision with
obstacles in the environment and avoiding self-collision. Motion planning has
applications in robotics, games/virtual reality, computer-aided design (CAD),
virtual prototyping, and bioinformatics.

While an exact motion planning algorithm exists, its complexity grows ex-
ponentially in the complexity of the robot [17]. Instead, research has turned
towards randomized algorithms. One widely used and quite successful ran-
domized algorithm is the Probabilistic Roadmap Method (PRM) [11]. PRMs

2 Samuel Rodriguez, Shawna Thomas, Roger Pearce, and Nancy M. Amato

operate in configuration space (C-space), where each point in C-space corre-
sponds to a specific robot configuration/placement. While not guaranteed to
find a solution, PRMs are probabilistically complete, i.e., the probability of
finding a solution given one exists approaches 1 as the number of samples in
the roadmap approaches oo.

Issues: The motion planning problem is significantly more challenging
when there are difficult or narrow areas in C-space that must be explored.
While there have been many attempts to generate samples in difficult or in-
teresting areas of C-space [1,4,5,7,20], they are typically applied over the
entire C-space and do not allow for the identification and refinement of par-
ticular areas of C-space.

Motion planning problems typically come in one of two types: multi-query
path planning and single-query path planning. The goal of a multi-query plan-
ner is to efficiently model the entire free C-space so as to answer any query
in that space. A single-query planner, however, is only concerned about the
portion of free C-space needed for the query, so it is generally faster than a
multi-query planner. Most randomized motion planners are well-suited to one
of these problem types, but not to both.

Our Contribution: In this work, we propose RESAMPL, a motion plan-
ning strategy that uses local region information to make intelligent decisions
about how and where to sample, which samples to connect together, and to
find paths through the environment. Based on an initial set of samples, we
classify regions of C-space according to the entropy of their samples. We then
use these classifications to further refine the sampling. For example, we in-
crease sampling in “narrow” regions and decrease sampling in “free” regions.
Regions are placed in a region graph that encodes relationships between re-
gions, e.g., edges correspond to overlapping regions. We use the region graph
to determine appropriate connection strategies for multi-query planning and
to extract a sequence of regions on which to focus sampling and connection
for single-query planning.

Our experimental results comparing RESAMPL to previous multi-query and
single-query methods show that it is generally significantly faster and also
usually requires fewer samples to solve the problem. Hence, RESAMPL’s region-
based approach to motion planning addresses both issues mentioned above.

e Regions: Considering local information when deciding where and how to
refine sampling and connection enables us to focus on difficult areas instead
of continuously searching in the entire space as is done by most previous
methods.

e Region Graph: The relationships between regions can be exploited during
connection in both multi-query and single-query situations.

RESAMPL: A Region-Sensitive Adaptive Motion Planner 3

2 Related Work

There has been extensive work on randomized motion planners for both multi-
query and single-query problems. In this section we give an overview of some
of the methods that have been proposed.

Multi-Query Planning. One widely used and quite successful multi-
query randomized planner is the Probabilistic Roadmap Method (PrRM) [11].
PRMS consist of two phases, a preprocessing/roadmap construction phase and
a query phase. During roadmap construction, robot configurations are first
randomly sampled from C-space. Samples are kept if they are in the feasible
region of C-space (C-free). Connections are then attempted using a simple
local planner between neighboring configurations. Valid connections are stored
as edges in the roadmap.

Although PRMs have been successful in solving previously unsolvable prob-
lems, they have difficulty when the solution path must pass through a narrow
passage in the C-space. Attempts have been made to generate configurations
in interesting areas of C-space that are difficult to discover using uniform ran-
dom sampling. For example, [1,4,9,16] attempt to generate samples near the
surface of C-space obstacles. In [20], samples are generated and then pushed
toward the approximate medial axis of C-free, and in [7], the roadmap is
generated from a discrete approximation of the workspace medial axis.

In addition, machine learning techniques have been used to improve plan-
ner performance. In [14], regions of C-space are classified as either free, clut-
tered, narrow, or non-homogeneous using features obtained from a coarse
sampling and a decision tree. Regions classified as non-homogeneous are fur-
ther subdivided until properly classified or a maximum number of subdivisions
has occurred. Specific node generation methods that were manually selected
to work well in a given type of region are then applied in each region.

In [5, 6], entropy is used to build a model of C-space. To generate a new
sample, the expected information gain is computed over a set of random sam-
ples. The sample with the greatest information gain is added to the model
and also added to the roadmap if it is valid. An important difference from our
work is that sampling and evaluation is done on a global basis, rather than
focusing on particular regions.

Adaptive sampling [10] is proposed to select node generation methods in
order to generate nodes that have been classified as more useful. Again, node
generation is done on a global level reducing the likelihood of generating nodes
in the narrow passages of C-space.

Finally, [19] is a complete, deterministic planner that partitions the free
space into star-shaped regions such that a single sample can see every point
in the region. Then, these samples are connected together to form a roadmap
for planning. This method performs well for low dof robots, but because the
complexity grows exponentially with the robot’s dof, it may be impractical
for high dof robots.

4 Samuel Rodriguez, Shawna Thomas, Roger Pearce, and Nancy M. Amato

Single-Query Planning. Various single-query techniques have been de-
veloped that attempt to limit planning to the portions of the environment
needed to solve the query. RRT (Rapidly-Exploring Random Tree) [13] is a
tree-based method that attempts to explore C-space beginning from a start
configuration until it reaches the goal configuration. The tree grows by biasing
sampling towards unexplored regions. In [12], a variation to RRT was devel-
oped that biases the growth of two trees initiated from the start and the goal
configurations toward each other for faster solution of a particular query.

Lazy Evaluation Methods. Several PRM variants have been proposed
that delay some or all node/edge validation until they are needed in the query
phase. These methods can be used as multi-query or single-query methods.
Lazy PRM [3] initially assumes all nodes and edges to be valid during roadmap
construction. To process a query, nodes and edges are checked. Invalid por-
tions are removed from the roadmap and a new path is extracted. This repeats
until a valid path is found or a path no longer exists in the roadmap. Fuzzy
PRM [15] validates nodes during roadmap construction but postpones edge
validation until the query phase. It uses a priority-based evaluation scheme
to validate edges along the path. Finally, Customizable PRM [18] performs a
coarse validation of nodes and edges during roadmap construction and com-
pletely validates nodes and edges as necessary to solve the query.

3 Model Overview

Our general strategy is to learn about local regions of C-space and to exploit
that information during planning. For example, regions are classified to de-
termine how they should be treated in other planning phases such as node
generation or connection. The local regions may also be put in a region graph
that approximately describes the connectivity of the C-space. This region
graph can be used in both node connection and in single-shot planning.

To improve an existing model, our objective is to identify regions where
additional sampling will lead to significant gains in C-space knowledge. For
example, transition areas between C-free and C-obstacles may represent areas
on the surface of C-obstacles or narrow passages in C-space. We want to
identify these transition areas and bias our sampling to increase our knowledge
of these areas. Similarly, we can limit sampling in regions that are completely
in C-free or in C-obstacles as more samples in these areas will be unlikely to
yield benefit. In this way, we focus on areas of C-space that are interesting
in both node generation and connection. In this section we describe how the
model is constructed, regions are classified, and sampling is both biased and
filtered. An example of how our method works can be seen in Figure 1.

3.1 Region Construction

The model is initialized with a set of samples from the C-space, as in Fig-
ure 1(b), including both free and collision configurations. These samples may

RESAMPL: A Region-Sensitive Adaptive Motion Planner 5

ampling

(b) Initial S

Z / ’Q'/V'

(e) Resulting Samples

Fig. 1. Overview of model creation and usage. (a) Given an initial C-space, and
(b) an initial sampling, (c) local regions can be constructed and (d) classified as
free (F), blocked (B), surface (S), or narrow (N). Region classification results in (e)
further sampling or filtering.

be generated by any method. Regions are then defined by a representative
sample (e.g., the center of the region) and neighboring samples (used to com-
pute region statistics such as the entropy and radius), as in Figure 1(c).
There are many ways to construct a set of regions. Algorithm 3.1 describes
a simple region construction technique. Each new region center is randomly
selected from the set of initial samples that are not already in another region.
Neighboring samples are selected from all initial samples. Samples may be
selected as part of multiple regions. In this way, the region radii are relatively
similar. Region construction is complete when each sample is either a region
center, part of a region, or both. As is discussed below, the quality of this type
of region construction is somewhat dependent on the initial sample coverage.

3.2 Entropy Biased Region Classification

In order to identify the transition regions of C-space, we need a model that
calculates how “interesting” the region is. We use the region’s entropy to
determine if it is a transition area. Entropy is a measure of the disorder of
the region’s samples. Regions containing samples that are completely free or
completely blocked are considered to have low entropy. Regions containing
a mixture of free and blocked samples are considered to have high entropy.

6 Samuel Rodriguez, Shawna Thomas, Roger Pearce, and Nancy M. Amato

Algorithm 3.1 Region Construction
Require: Model M, initial samples S, and k.
1: while there exists an unmarked sample in S do
2: Let ¢ be a randomly selected unmarked sample € S.
Set N = {k nearest neighbors to c}.
Set R = a new region with center ¢ and neighbors N.
Add R to M.
Flag ¢ and N as marked.
end while
return M

As described below, four simple and intuitive classifications can be obtained
based on entropy values: free (low entropy), surface (high entropy), narrow
(high entropy), and blocked (low entropy), see Figure 2 and Figure 1(d). These
classifications can later be used in roadmap construction or other planning.

(d) Narrow (e) Blocked

Fig. 2. Classifications based off of region construction.

Algorithm 3.2 describes one way to classify regions based on entropy. For
each region, we iteratively evaluate the region’s entropy, attempt to classify,
and add additional samples if a classification cannot be made.

Free regions can be identified by computing the percentage of blocked
samples in the region. When this percentage (or entropy) is low enough, the
region is classified as free. Experience indicates that it is unlikely to misclassify

RESAMPL: A Region-Sensitive Adaptive Motion Planner 7

Algorithm 3.2 Region Classification
Require: A region R, threshold ejou, threshold enign, number of attempts to clas-
sify ¢, and number of samples to add in each classification attempt k.
for ¢ attempts to classify R do
: Let er be the entropy of R (% of blocked samples in R).

1:

2

3 if er < €0 then

4: return free

5 end if

6: Add k additional samples to R and recompute eg.

7 Partition R into two subregions, Rfree and Ryocked-

8 Let efree be the entropy of Ryree (% of blocked samples in Rypee).

9: Let epiocked be the entropy of Rpiocked (% of free samples in Rpiocked)-
10: if efree < €l1ow and epiocked < €low then

11: return surface
12: end if
13: end for

14: if eg == 1 then
15: return blocked
16: end if

17: if er > epign then
18: return narrow
19: end if

20: return surface

a region as free with this method. If the initial, coarse sampling in a region
contains mostly free samples, then it is likely that a finer sampling will also
contain mostly free samples. Thus, in every iteration, we first attempt to
classify the region as free.

Blocked regions can be identified in a similar manner, i.e., if the percentage
of free samples in the region (or entropy) is low enough, the region is classified
as blocked. Note that unlike a low entropy free region, a low entropy blocked
region should not automatically be considered blocked and then disregarded.
This is because a blocked region could potentially become a high entropy
region with additional sampling, e.g., when the region contains some volume of
C-free which has not yet been sampled. For example, see Figure 1(c) and 1(d)
in which a region constructed does not initially contain any free nodes, but it
is classified as narrow since free nodes are discovered during the classification
process. Thus, we do not classify a region as blocked until several attempts
have been made to classify and add additional samples.

A region is classified as surface if sub-regions within the given region have
low entropy. One way to define the sub-regions is as follows. Let c¢p be the
centroid of all the free samples and cp be the centroid of all the blocked
samples in the parent region. We then define two regions with centers cg and
cp and we assign each sample in the parent region to the sub-region whose

8 Samuel Rodriguez, Shawna Thomas, Roger Pearce, and Nancy M. Amato

center it is closest to. Then, if both sub-regions have low entropy, we classify
the parent region as a surface region.

Regions are classified as narrow if they are high entropy regions that cannot
be partitioned into two low entropy regions. Like blocked regions, narrow
regions are more difficult to classify because of the risk of misclassification.
Thus, we do not attempt to classify a region as narrow until several attempts
have been made to classify and add additional samples.

Finally, when a transition region cannot be classified as described above,
then it is considered as a surface region. Empirical testing showed this was
the best assignment for such regions.

3.3 Region Graph

To complete the model construction, we build a region graph that approxi-
mately describes the connectivity of the local C-space regions. In our current
implementation, vertices correspond to regions and an edge is placed between
two regions if they overlap. We assign an edge weight based on the types of
regions connected. With this region graph, we can extract region paths to aid
single-query planning or refine it to aid multiple-query planning.

The region graph may be refined by merging adjacent regions of the same
type or splitting regions that were not clearly classified. Regions may be com-
bined if the resulting parent region is also of the same type. In addition to
resulting in fewer regions, region merging is useful in obtaining larger portions
of C-space of the same type. This is important when adding or removing sam-
ples based on the region type.

4 Multi-Query Planning

In multiple query planning, a single roadmap must support many varied
queries so one desires a roadmap that efficiently characterizes the connec-
tivity of as much of the free C-space as possible. For this type of planning, we
construct the regions and region graph as outlined in Section 3.

To reduce roadmap construction costs, we only keep “important” samples
from the regions in the roadmap. This greatly reduces construction time by
focusing connection on difficult/narrow areas of C-space and less on large,
open areas of C-space. We keep a sample in a free region with a low probability
pr, a sample in a surface region with a higher probability ps, and a sample
in a narrow region with a high probability pny. We do not keep any samples
from blocked regions since they do not contain any valid samples. We then
perform a user-selected connection strategy only on these samples.

In addition, we can use the region classification to further improve the
roadmap. For example, we can use RRT to explicitly explore narrow passages
because we have already identified them with the region classification. Thus,
for each connected component in a narrow region, we allow RRT to expand the

”

RESAMPL: A Region-Sensitive Adaptive Motion Planner 9

component by a user-defined number of iterations. This exploits RRT’s ability
to rapidly search confined regions of C-space by starting it in the difficult to
find narrow passages.

5 Single-Query Planning

Single-shot motion planning involves finding a path for a given query from a
start to goal configuration. Ideally, it involves exploring only the portions of
the space needed to solve the query. An effective single-shot planner should
be able to focus on portions of the path that will be used to solve the query.

We are able to use the model that we have constructed to first find an ap-
proximate region path connecting the start and goal configurations. The region
path is extracted from the region graph and approximates a path through re-
gions that the robot should travel through to move from region to region. In
the following we will describe how the paths are obtained and connected to
result in a path for a given robot from a start to a goal configuration.

5.1 Path Extraction and Improvement

The first step in region path extraction is to find the regions that the start
and goal configurations can connect to. The nearest unblocked (free, surface,
or narrow) region that the start and the goal configurations can connect to
are set as the start and end regions, respectively, of the region path. A path is
then found through the region graph that connects the start and end regions.
The region graph is weighted such that a path is extracted through unblocked
(free, surface or narrow) regions if possible and uses blocked regions only if
needed, see Figure 3(a). Blocked regions found in the path can be reclassified
in order to have a continuous sequence of unblocked path regions.

The region path extracted as described above is simply a minimal path of
neighboring regions. While it is generally simple to extract an actual path from
the region path that connects two adjacent free regions, it can sometimes be
difficult to extract an actual path when the region path passes through more
difficult (surface, narrow or blocked) regions. To improve our ability to extract
paths in the latter case, we apply a simple region path improvement step that
expands the volume of the region path by including neighboring unblocked
regions in difficult areas. In particular, given neighboring path regions R; and
R, 1, region path improvement is achieved by including unblocked regions in
the path that neighbor both R; and R;y;. If both R; and R;;; are classified
as free regions, then the region path improvement step can be omitted. An
example of this process can be seen in Figure 3 in which the resulting region
path covers a larger volume in the difficult and narrow regions. Though this
is a simple process, it was shown to be quite effective during the connection
phase in our experiments.

10 Samuel Rodriguez, Shawna Thomas, Roger Pearce, and Nancy M. Amato

(a) (b)

Fig. 3. Region paths extracted from s-tunnel environment (a) a minimal path ex-
tracted and (b) an improved region path resulting in better connection.

5.2 Path Connection

Although the connection strategy proposed here is very simple, it has proven
sufficient for our purposes. For a given region path, nodes can be sampled
as described in Section 4. The samples obtained can then be connected us-
ing a simple k-closest connection strategy. If necessary a simple component
connection method can be applied that connects [-pairs from neighboring un-
connected components.

As a final step, the path obtained should connect the start and goal con-
figurations of the query. If a path cannot be found, then more connection
attempts between neighboring unconnected regions can be attempted.

6 Results and Discussion

In this section we report on the performance of our region based motion
planner as both a multi-query and a single-query planner. All planners were
implemented using the Parasol Lab motion planning library developed at
Texas A&M University. RAPID [8] is used to provide collision detection. Two
types of local planners, straight-line and rotate-at-0.5 [2], are used to connect
sampled configurations. Unless otherwise stated, connections were attempted
only between k = 20 “nearby” nodes according to some selected distance
metric. All experiments were run on a 700MHz Intel PIII Xeon processor and
results are averaged over 10 runs.

6.1 Multi-Query Planning

For multi-query planning, we tested two environments with narrow passages,
L-Tunnel (Figure 4(a)), where traversing the passage requires mainly trans-
lational motion, and Hook (Figure 4(b)) where traversing the passage re-
quires mainly orientational motion. We compare our method to some com-
mon PRM methods, uniform random sampling [11], obstacle-based sampling

RESAMPL: A Region-Sensitive Adaptive Motion Planner 11

(oBPRM) [1], and bridge test sampling [9]. We also compare our method to
another adaptive sampling method, hybrid PrRM [10]. To compare the per-
formance of these multi-query planners, we specified a single query in each
environment that required the robot to pass through each free region. We then
determined the smallest roadmap size required to solve this specific query.

(a) (b)

Fig. 4. (a) L-Tunnel environment. The robot (on the right) must pass through
corridors in the central obstacle. (b) Hook environment. The robot (on the left)
must twist through both plates to reach the other end of the environment.

L-Tunnel results. For this environment, we started with 2500 uniform
random samples and constructed regions using the the 15 closest samples to
the region center, as described in Algorithm 3.1. To classify the regions, we
defined low entropy as 0.1 (i.e., at most 10% of the region samples are of
one type and the remaining are of the other type) and attempted to classify
each region at most 10 times by adding 45 random samples to the region.
We then filtered the nodes by only keeping samples from narrow regions. We
used the region graph to aid connection. Within each region, we perform a
quick but sparse connection by attempting the £ = 2 nearest unconnected
neighbors. Then we connect components in overlapping regions (i.e., adjacent
regions in the region graph) by attempting to connect the 5 closest pairs of
samples between the regions. We then enhanced the roadmap by using RRT
to further explore narrow regions and attempted 10 additional connections
between these components. We determined the appropriate roadmap size to
solve the query by varying the amount RRT could explore.

Figure 5(a-d) shows how our method classifies local regions as free, surface,
narrow, and blocked. While not perfect, it is able to successfully identify
the two key narrow passages in the central obstacle. Figure 5(e-f) shows the
effect of exploiting region classification to increase and filter samples in local
areas. The initial distribution of uniform random samples cannot find any
free samples in the two narrow passages and has oversampled the three large
free regions. However, we then classified local regions based on these initial
samples, reduced samples in free and surface regions, and increased samples
in narrow regions. The resulting distribution is much more biased to highly
constrained regions of the environment, namely the two narrow passages in
the central obstacle and near the surfaces of all three obstacles.

12 Samuel Rodriguez, Shawna Thomas, Roger Pearce, and Nancy M. Amato

(c) Surface

(b) Narrow (d) Blocked (f) Final

Fig. 5. (a-d) Region classification for the L-Tunnel environment. (e-f) Sampling
distributions for L-Tunnel environment. The robot is scaled to 30% of its original
size for visualization clarity. Our method successfully altered the distribution of the
initial uniformly random samples to increase sampling in highly constrained regions
and decrease sampling in large free regions.

Results for the L-Tunnel environment can be seen in Table 1. For this envi-
ronment, uniform random sampling did not solve the query with 32,000 sam-
ples in any of the 10 runs. Region-based sampling was able to solve the query
with the fewest nodes, time, and collision detection calls. While bridge test
sampling requires approximately the same number of nodes, it takes nearly
three times as long and roughly ten times more collision detection calls on
average to find a solution. The adaptable behavior of region-based sampling
enables it to out-perform global adaptive strategies like hybrid PRM.

Multi-Query Planning
Environment Method Nodes|Time (s)|CD Calls|% Solved
L-Tunnel Region-Based 2,086 136 205,636 100
OBPRM 8,400 1,036 354,706 100
Bridge Test 2,500 473| 1,963,948 100
Hybrid PRM 3,710 1,401| 1,233,573 100
Uniform Sampling| 32,000 13,186| 554,160 0
Hook Region-Based 1,352 62 64,500 100
OBPRM 925 36| 175,711 100
Bridge Test 1,175 416| 698,786 100
Hybrid PRM 1,892 454| 413,690 100
Uniform Sampling| 28,440 12,840f 306,131 90

Table 1. Multi-query planner performance in the L-Tunnel and Hook environments.

RESAMPL: A Region-Sensitive Adaptive Motion Planner 13

Hook results. Figure 6 shows how our method classifies local regions as
free, surface, narrow, and blocked. We scaled the region diameters down for
visualization clarity since regions are mostly defined by orientational differ-
ences than positional differences. Again, the method was able to successfully
identity the different region types, even with a coarser model than the one
used in the L-Tunnel environment. (Here, we reduced the number of initial
model samples down to 400 and only added 25 samples to a region during a
classification iteration; all other method parameters were kept the same.)

‘ |
L -
(a) Free (b) Surface
W . o
B LN
(c) Narrow (d) Blocked

Fig. 6. Region classification for the Hook environment. Region diameters are scaled
down for visualization clarity since regions are mostly defined by orientational dif-
ferences than positional differences.

Results for the hook environment can be seen in Table 1. For this envi-
ronment, uniform random sampling was only able to solve the query 90% of
the time requiring an extremely large number of samples. In terms of time,
Region-based sampling out-performed all methods except OBPRM, while mak-
ing the fewest collision detection calls of all methods. This latter fact could
prove significant in environments were collision detection is more expensive.

6.2 Single-Query Planning

In Single-query planning, the planner tries to explore only the portions of
C-Space relevant for a given query. The approximate representation of C-Free
in our region-based approach allows us to focus our search in these relevant
portions, offsetting the cost of building the initial model.

The planners tested for single-query planning are RRT Connect [12], RRT
Expand [13], LazyPRM [3], and our Region-Based single-query planner. For

14 Samuel Rodriguez, Shawna Thomas, Roger Pearce, and Nancy M. Amato

each environment, each method is run until a given query can be solved. The
environments tested for these single query methods are the S-Tunnel and Maze
environment. Both of these environments have narrow passages that the robot
must travel through when moving from the start to goal configuration.

S-Tunnel results. The S-Tunnel environment can be seen in Figure 3.
The start and goal configurations are on opposite sides of the environment,
such that the robot has to travel through the narrow passage connecting the
query configurations. As seen in Table 2, the Region-Based single query plan-
ner outperforms the other methods in the number of nodes, time and collision
detection calls (CD Calls) needed to solve the query. While LazyPRM and
RRT Connect have similar performance in this environment, LazyPRM does
perform better than RRT Connect. RRT Expand performs only slightly worse
than RRT Connect. Our results indicate that the region-based strategy suc-
ceeds in identifying important regions. In particular, the regions and samples
identified in the narrow passage, Figure 3, are used to improve sampling and
connection. The RRT methods have difficulty in finding the difficult areas,
while our model identifies these regions and can utilize them in planning.
LazyPRM is able to find samples in these difficult regions but has difficulty
in making valid connections when in the difficult region.

Single-Query Planning
Environment| Method |[Nodes|Time (sec)|CD Calls
S-Tunnel Region-Based 573 36 82,298
RRT Connect| 7,939 958| 360,513
RRT Expand | 7,774 1,170 473,735
LazyPRM 1,173 609| 361,889
Maze Region-Based 334 32 27,493
RRT Connect| 2,131 79 48,775
RRT Expand | 2,947 187 69,639
LazyPRM 561 364| 127,747

Table 2. Single-query planner performance in the S-Tunnel and Maze environments.

Maze results. The Maze environment (Figure 7(a)), consists of a series of
passages that the robot must travel through from the start to the goal config-
uration. These configurations are on opposite ends of the maze. Though this
environment is less difficult than the S-Tunnel environment, it is difficult for
the RRT and LazyPRM methods. As seen in Table 2, utilizing information
about the local regions of C-Space enables our Region-Based method per-
form significantly better than the other methods. These important regions,
extracted from the region map are shown in Figure 7(b). Here again, RRT
Connect performs better than RRT Expand and the RRT approaches again
have difficulty of finding the narrow passages. A difference in this case is
that LazyPRM spends much more time trying to solve the query. Although

RESAMPL: A Region-Sensitive Adaptive Motion Planner 15

LazyPRM only uses a small number of samples, it spends a large amount of
time verifying edges and finding configurations in the narrow passage.

Fig. 7. (a) Maze environment. The robot must pass through a series of passages
from the start to the goal configuration. (b) Narrow local regions of C-Space found.

7 Conclusion

In this work we have shown how a region-based approach can be applied
to both multi-query and single-query motion planning problems. It has also
been shown to perform better, in many cases, than existing techniques. By
focusing on regions that have been appropriately classified, we are able to
better explore and sample the space. Although only results for rigid bodies
were presented here, we believe this approach will readily extend to high dof
problems and this is the subject of current work.

Acknowledgments. This research supported in part by NSF Grants EIA-
0103742, ACR-0081510, ACR-0113971, CCR-0113974, ACI-0326350, and by
the DOE. Rodriguez supported in part by a National Physical Sciences Con-
sortium Fellowship. Thomas supported in part by an NSF Graduate Research
Fellowship and a PEO scholarship.

References

1. N. M. Amato, O. B. Bayazit, L. K. Dale, C. V. Jones, and D. Vallejo. OBPRM:
An obstacle-based PRM for 3D workspaces. In Robotics: The Algorithmic Per-
spective, pages 155-168, Natick, MA, 1998. A.K. Peters. Proc. Third Workshop
on Algorithmic Foundations of Robotics (WAFR), Houston, TX, 1998.

2. N. M. Amato, O. B. Bayazit, L. K. Dale, C. V. Jones, and D. Vallejo. Choosing
good distance metrics and local planners for probabilistic roadmap methods.
IEEE Trans. Robot. Automat., 16(4):442-447, August 2000.

3. R. Bohlin and L. E. Kavraki. Path planning using Lazy PRM. In Proc. IEEE
Int. Conf. Robot. Autom. (ICRA), pages 521-528, 2000.

16

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

Samuel Rodriguez, Shawna Thomas, Roger Pearce, and Nancy M. Amato

. V. Boor, M. H. Overmars, and A. F. van der Stappen. The Gaussian sampling
strategy for probabilistic roadmap planners. In Proc. IEEE Int. Conf. Robot.
Autom. (ICRA), volume 2, pages 1018-1023, 1999.

. B. Burns and O. Brock. Sampling-based motion planning using predictive mod-

els. In Proc. IEEE Int. Conf. Robot. Autom. (ICRA), 2005.

B. Burns and O. Brock. Toward optimal configuration space sampling. In Proc.

Robotics: Sci. Sys. (RSS), 2005.

M. Foskey, M. Garber, M. Lin, and D. Manocha. A voronoi-based hybrid motion

planner. In Proc. IEEE/RSJ International Conf. on Intelligent Robots and

Systems (IROS 2001), 2001.

S. Gottschalk, M. C. Lin, and D. Manocha. OBB-tree: A hierarchical struc-

ture for rapid interference detection. Comput. Graph., 30:171-180, 1996. Proc.

SIGGRAPH ’96.

D. Hsu, T. Jiang, J. Reif, and Z. Sun. Bridge test for sampling narrow passages

with proabilistic roadmap planners. In Proc. IEEE Int. Conf. Robot. Autom.

(ICRA), pages 4420-4426, 2003.

D. Hsu, G. Sanchez-Ante, and Z. Sun. Hybrid PRM sampling with a cost-

sensitive adaptive strategy. In Proc. IEEE Int. Conf. Robot. Autom. (ICRA),

pages 3885-3891, 2005.

L. E. Kavraki, P. Svestka, J. C. Latombe, and M. H. Overmars. Probabilistic

roadmaps for path planning in high-dimensional configuration spaces. IEEE

Trans. Robot. Automat., 12(4):566-580, August 1996.

J. J. Kuffner and S. M. LaValle. RRT-Connect: An Efficient Approach to Single-

Query Path Planning. In Proc. IEEE Int. Conf. Robot. Autom. (ICRA), pages

995-1001, 2000.

S. M. LaValle and J. J. Kuffner. Rapidly-Exploring Random Trees: Progress

and Prospects. In Proc. Int. Workshop on Algorithmic Foundations of Robotics

(WAFR), pages SA45-SA59, 2000.

M. Morales, L. Tapia, R. Pearce, S. Rodriguez, and N. M. Amato. A machine

learning approach for feature-sensitive motion planning. In Proc. Int. Workshop

on Algorithmic Foundations of Robotics (WAFR), pages 316-376, Utrecht/Zeist,

The Netherlands, July 2004.

C. L. Nielsen and L. E. Kavraki. A two level fuzzy PRM for manipulation

planning. Technical Report TR2000-365, Computer Science, Rice University,

Houston, TX, 2000.

S. Redon and M. C. Lin. Practical local planning in the contact space. In Proc.

IEEE Int. Conf. Robot. Autom. (ICRA), April 2005.

J. H. Reif. Complexity of the mover’s problem and generalizations. In Proc.

IEEE Symp. Foundations of Computer Science (FOCS), pages 421-427, San

Juan, Puerto Rico, October 1979.

G. Song, S. L. Miller, and N. M. Amato. Customizing PRM roadmaps at query

time. In Proc. IEEE Int. Conf. Robot. Autom. (ICRA), pages 1500-1505, 2001.

G. Varadhan and D. Manocha. Star-shaped roadmaps: A deterministic sampling

approach for complete motion planning. In Proc. Robotics: Sci. Sys. (RSS),

2005.

S. A. Wilmarth, N. M. Amato, and P. F. Stiller. MAPRM: A probabilistic

roadmap planner with sampling on the medial axis of the free space. In Proc.

IEEE Int. Conf. Robot. Autom. (ICRA), volume 2, pages 1024-1031, 1999.

