Sampling-Based Algorithms

DIFFERENT PLANNERS described in chapter 5 build roadmaps in the free (or semi-
free) configuration space. Each of these methods relies on an explicit representation
of the geometry of Qge.. Because of this, as the dimension of the configuration
space grows, these planners become impractical. Figure 7.1 shows a path-planning
problem that cannot be solved in a reasonable amount of time with the methods
presented in chapter 5, but can be solved with the sampling-based methods described
in this chapter. Sampling-based methods employ a variety of strategies for generating
samples (collision-free configurations of the robot) and for connecting the samples
with paths to obtain solutions to path-planning problems. :

Figures 7.2(a) and (b) show two typical examples from industrial automation that
sampling-based planners can routinely solve. Sampling-based planners can also be
used to address problems that extend beyond classic path planning. Figure 7.2(c)
shows a CAD (computer-aided design) model of an aircraft engine. A planner can
be used to determine if a part can be removed from that engine. Such information
is extremely important for the correct design of the engine, as certain parts need to
be removable for maintainability purposes. In this case, the planner considers the
part to be separated as a robot that can move freely in space. Figure 7.2(d) involves
an example from computer animation where a planner is used to plan the motion of
the human figure. Figures 7.2(e) and (f) provide examples that involve planning with
kinematic and dynamic constraints, while figure 7.2(g) displays the folding of a small
peptide molecule. This chapter discusses the basics of sampling-based path planning.

198 7 Sampling-Based Algorithms

-Qq./hqboqpoﬁ
* o ¢ o ¢ o L JBR 4

Figure 7.1 Snapshots along a path of a planar manipulator with ten degrees of freedom. The
manipulator has a fixed base and its first three links have prismatic joints—they can extend to
one and a half times their original length. (From Kavraki [2211].)

The Development of Sampling-Based Planners

Sampling-based planners were developed at a time when several complexity results
on the path-planning problem were known. The generalized mover’s problem, in
which the robot consists of a collection of polyhedra freely linked together at various |
vertices, was proven PSPACE-hard by Reif [361]. Additional study on exact path-
planning techniques for the generalized mover’s problem led Schwartz and Sharir to
an algorithm that was doubly exponential in the degrees of freedom of the robot [373].
This algorithm is based on a cylindrical algebraic decomposition of semi-algebraic
descriptions of the configuration space [117]. Recent work in real algebraic geometry
renders the algorithm singly exponential [42]. Canny’s algorithm [90], which builds
a roadmap in the configuration space of the robot, is also singly exponential in the
degrees of freedom of the robot. Furthermore, Canny’s work showed that the gener-
alized mover’s problem was PSPACE-complete [90,95]. The implementation of the
above general algorithms is very difficult and not practical for the planning problems
shown in figure 7.2.

The complexity of path-planning algorithms for the generalized mover’s prob-
lem fueled several thrusts in path-planning research. These included the search for §
subclasses of the problem for which complete polynomial-time algorithms exist
(e.g., [183,374]), the development of methods that approximated the free config-
uration space (e.g., [67,68,132,297]), heuristic planners (e.g., [174]), potential-field §
methods (e.g., [38,401), and the early sampling-based planners (e. g.,140,47,101, 165, !
220,231,244]). ‘

The Probabilistic RoadMap planner (PRM) [231] demonstrated the tremendous
potential of sampling-based methods. PRM fully exploits the fact that it is cheap
to check if a single robot configuration is in Qpe. or not. PRM creates a roadmap in
Ofree. It uses rather coarse sampling to obtain the nodes of the roadmap and very fine
sampling to obtain the roadmap edges, which are free paths between node configu- E
rations. After the roadmap has been generated, planning queries can be answeredby |
connecting the user-defined initial and goal configurations to the roadmap, and by

@ ®)

(c) (d)

(g

Figure 7.2 Path-planning problems. (a) Industrial manipulation. (b) Welding. (c) Planning
removal paths for a part (the “robot”) located at the center of the figure. (d) Computer animation.
(e) Planning aircraft motion. (f) Humanoid robot. (g) Folding of a small peptide molecule.
((a) From Bohlin and Kavraki [54]; (b) from Hsu and Latombe [196]; (c) courtesy of Latombe;
(d) from Koga, Kondo, Kuffner and Latombe [241]; (e) from Kuffner and LaValle [272];
(f) from Kuffner [248]; (g) from Amato [21].)

200

7 Sampling-Based Algorithms

using the roadmap as in chapter 5 to solve the path-planning problem at hand. Initially,
node sampling in PRM was done using a uniform random distribution. This planner
is called basic PRM. It was observed that random sampling worked very well for a
wide variety of problems [221,231,345] and ensured the probabilistic completeness
of the planner [221,229]. However, it was also observed [221] that random sampling
is only a baseline sampling for PRM and many other sampling schemes are useful and
are bound to be efficient for many planning problems as the analysis of the planner
revealed. Today, these sampling schemes range from importance sampling in areas
that during the course of calculations are found difficult to explore, to deterministic
sampling such as quasirandom sampling and sampling on a grid. This chapter will
describe the basic PRM algorithm, several popular node-sampling strategies, as well
as their advantages and disadvantages, and popular node-connection strategies.

PRM was conceived as a multiple-query planner. When PRM is used to answer a sin-
gle query, some modifications are made: the initial and goal configurations are added
to the roadmap nodes and the construction of the roadmap is done incrementally and is
stopped when the query at hand can be answered. However, PRM may not be the fastest
planner to use for single queries. The second part of this chapter describes sampling-
based planners that are particularly effective for single-query planning, including
the Expansive-Spaces Tree planner (EST) [192, 196] and the Rapidly-exploring
Random Tree planner (RRT) [249,270]. These planners exhibit excellent experi-
mental performance and will be discussed in detail.

Combination of the above methods is also possible and desirable in many cases. The
Sampling-Based Roadmap of Trees (SRT) planner [14, 43] constructs a PRM-style
roadmap of single-query-planner trees. It has been observed that for very difficult path
planning problems, single-query planners need to construct large trees in order to find a
solution. In some cases, the cost of constructing a large tree may be higher than the cost
of constructing a roadmap of Qg.. with SRT. This illustrates the distinction between
multiple-query and single-query planning, and its importance. The SRT planner will
be discussed in detail in this chapter.

Despite their simplicity, which is exemplified in the basic PRM planner, sampling-
based planners are capable of dealing with robots with many degrees of free-
dom and with many different constraints. Sampling-based planners can take into
account kinematic and dynamic constraints (e.g., [195,271}]), closed-loop kinemat-
ics (e.g., [121, 184, 268]), stability constraints (e.g., [64, 247, 248]), reconfigurable
robots (e.g., [98, 139, 149]), energy constraints (e.g., [251,255]), contact constraints
(e.g., [210]), visibility constraints (e.g., [123]) and others. Clearly some planners are
better at dealing with specific types of constraints than others. For example, as dis-
cussed in section 7.5.1, EST and RRT planners are particularly useful for problems that
involve kinematic and dynamic constraints. Kinodynamic problems are described in
chapters 10, 11, and 12.

7 Sampling-Based Algorithms 201

PRM, EST, RRT, SRT, and their variants have changed the way path planning is
performed for high-dimensional robots. They have also paved the way for the devel-
opment of planners for problems beyond basic path planning. Because of space lim-
itations, this chapter concentrates on the above planners and some of their variants,
and does not include a comprehensive description of all effective sampling-based
planning methods.

Characteristics of Sampling-Based Planners

An important characteristic of the planners described in this chapter is that they do
not attempt to explicitly construct the boundaries of the configuration space obstacles
or represent cells of Qge.. Instead, they rely on a procedure that can decide whether a
given configuration of the robot is in collision with the obstacles or not. In some sense,
sampling-based planners have very limited access to the configuration space. Efficient
collision detection procedures ease the implementation of sampling-based planners
and increase the range of their applicability. Furthermore, since collision detectionis a
separate module, it can be tailored to specific robots and applications. Recent advances
in collision detection algorithms have contributed heavily to the success of sampling-
based planners. Any future performance improvements in collision checking, which s
an active area of research, will also benefit directly the performance of sampling-based
planners. Examples of available collision detection packages include GJK [89, 163],
SOLID [420, 421], V-Clip [316], I-Collide [115,290], V-Collide [199], QuickCD
[238], PQP [261], RAPID [168], SWIFT [140], SWIFT++ [141], and others [88,296,
357,376].

Another important characteristic of sampling-based planners is that they can
achieve some form of completeness. Completeness requires that the planner always
answers a path-planning query correctly, in asymptotically bounded time. Complete
planners cannot be implemented in practice for robots with more than three degrees
of freedom due to their high combinatorial complexity. A weaker, but still interest-
ing, form of completeness is the following: if a solution path exists, the planner will
eventually find it. If the sampling of the sampling-based planner is random, then this
form of completeness is called probabilistic completeness. If the sampling is deter-
ministic, including quasirandom or sampling on a grid, this form of completeness is
called resolution completeness with respect to the sampling resolution. Probabilistic
completeness was shown for one of the earliest sampling-based planners, called the
Randomized Path Planner (RPP) [39,257], setting a standard for sampling-based meth-
ods. PRM was also shown to be probabilistically complete [195,221-223,228,252].
The analysis of the probabilistic completeness for the basic PRM planner [221,228] is
presented in this chapter. The theoretical results relate the probability that PRM fails
to find a path to the running time of the planner. Hence there is not only experimental

202

7.1

7 Sampling-Based Algorithms

evidence that PRM planners work well; there is also theoretical evidence of why this
is the case. The analysis also sheds light on why the basic PRM planner works well on
a large class of difficult problems.

Overview of This Chapter

Section 7.1 introduces PRM. In its basic form, PRM constructs a roadmap that represents
the connectivity of Q... This roadmap can be used for answering multiple queries.
Guidelines for the efficient implementation of this planner for a general robot are
also given. The guidelines are also relevant for the efficient implementation of the
other sampling-based planners described in this chapter. A number of different sam-
pling methods and connection strategies for PRM are then presented. Planners that are
optimized for single-queries are described in section 7.2. In general, these planners
generate trees in QOge... Some of the most efficient single-query planners, such as EST
and RRT planners, perform a conditional sampling of Oge.: the samples generated
depend on the currently constructed tree and the goal configuration. In section 7.2
the EST and RRT planners are described in detail. The combination of the different
sampling and connection strategies of sections 7.1 and 7.2 leads to an even more pow-
erful planner, SRT, which is described in section 7.3. An analysis of PRM is given in
section 7.4. Various extensions of the generalized mover’s problem are then discussed
in section 7.5, including applications from computational structural biology.

Probabilistic Roadmaps

The PRM plannet is described in [231]. The planner resulted from the work of indepen-
dent groups [225,226,344,345,404] and was further developed in [221,223,227,228].
PRM divides planning into two phases: the learning phase, during which a roadmap
in Qgee is built; and the query phase, during which user-defined query configurations
are connected with the precomputed roadmap. The nodes of the roadmap are config-
urations in Qge. and the edges of the roadmap correspond to free paths computed by
a local planner. The objective of the first phasé is to capture the connectivity of Qe
so that path-planning queries can be answered efficiently.

The basic PRM algorithm presented below can be used to solve high-dimensional
problems such as the one in figure 7.1. It has been shown to be probabilistically
complete [221,229,252]. In this section, the choices for the sampling and connection
strategies of PRM are reduced to a bare minimum to facilitate the presentation. The
emphasis here is to describe a planner that is easy to implement and works well even
with rather high-dimensional problems (5-12 degrees of freedom).

7.1.1

7.1 Probabilistic Roadmaps 203

Basic PRM

The basic PRM algorithm first constructs a roadmap in a probabilistic way for a given
workspace. The roadmap is represented by an undirected graph G = (V, E). The
nodes in V are a set of robot configurations chosen by some method over Qjee. For
the moment, assume that the generation of configurations is done randomly from a
uniform distribution. The edges in E correspond to paths; an edge (g1, g2) corresponds
to a collision-free path connecting configurations ¢; and g,. These paths, which are
referred to as local paths, are computed by alocal planner. In its simplest form, the local
planner connects two configurations by the straight line in Qy.., if such a line exists.

In the query phase, the roadmap is used to solve individual path-planning problems.
Given an initial configuration gy, and a goal configuration ggoal> the method first tries
to connect gy and ggou to two nodes ¢’ and g”, respectively, in V. If successful, the
planner then searches the graph G for a sequence of edges in £ connecting ¢’ to ¢”.
Finally, it transforms this sequence into a feasible path for the robot by recomputing
the corresponding local paths and concatenating them. Local paths can be stored in
the roadmap but this would increase the storage requirements of the roadmap, a topic
which is discussed later in this section.

The roadmap can be reused and further augmented to capture the connectivity of
Qfree- Although the learning phase is usually performed before any path-planning
query, the two phases can also be interwoven. It is reasonable to spend a considerable
amount of time in the learning phase if the roadmap will be used to solve many queries.

Roadmap Construction

To make the presentation more precise, let

m A be the local planner that oninput (¢, ¢') € Ofiee X Opree returns either a collision-
free path from g to ¢’ or NIL if it cannot find such a path. Assume for the moment
that A is symmetric and deterministic.

m dist be a function @ x Q@ — R U {0}, called the distance Sunction, usually a
metric on Q.

Algorithm 6 describes the steps of the roadmap construction. For all algorithms
described in this chapter, it should be noted that only the main steps are given and
that implementation details are missing.

Initially, the graph G = (V, E) is empty. Then, repeatedly, a configuration is
sampled from Q. For the moment, assume that the sampling is done according to a
uniform random distribution on Q. If the configuration is collision-free, it is added to
the roadmap. The process is repeated until n collision-free configurations have been

204

P S S
AN AR R S el =]

D A R

7 Sampling-Based Algorithms

Algorithm 6 Roadmap Construction Algorithm
Input:
n : number of nodes to put in the roadmap
k : number of closest neighbors to examine for each configuration
Output:
A roadmap G = (V, E)
V<90
E<~@ -

. while |V| < n do

repeat

g < arandom configuration in Q
until g is collision-free
V < VUl{q}

: end while
: forallg € V do

N, <« the k closest neighbors of ¢ chosen from V according to dist
forallg’ € N, do
it (¢,q9") ¢ E and A(q, q') # NIL then
E <~ EU{(g,9"}
end if
end for
end for

sampled. For everynode ¢ € V, a set N, of k closest neighbors to the configuration ¢
according to some metric dist is chosen from V. The local planner is called to connect
q toeachnode ¢’ € N,. Whenever A succeeds in computing a feasible path between
q and ¢, the edge (q, ¢’) is added to the roadmap. Figure 7.3 shows a roadmap
constructed for a point robot in a two-dimensional Buclidean workspace, where A is
a straight-line planner.

A number of components in algorithm 6 are still unspecified. In particular, it needs
to be defined how random configurations are created in line (5), how the closest
neighbors are computed in line (10), how the distance function dis? used in line (10)
is chosen, and how local paths are generated in line (12).

Query Phase

During the query phase, paths are found between arbitrary input configurations g
and ggoa using the roadmap constructed in the learning phase. Algorithm 7 illustrates
this process.

7.1 Probabilistic Roadmaps 205

Figure 7.3 An example of a roadmap for a point robot in a two-dimensional Euclidean space.
The gray areas are obstacles. The empty circles correspond to the nodes of the roadmap. The
straight lines between circles correspond to edges. The number of & closest neighbors for the
construction of the roadmap is three. The degree of a node can be greater than three since it
may be included in the closest neighbor list of many nodes.

Assume for the moment that Qg is connected and that the roadmap consists of
a single connected component. The main question is how to connect gipi and ggoa
to the roadmap. Queries should terminate as quickly as possible, so an inexpensive
algorithm is desired here. The strategy used in algorithm 7 to connect gy to the
roadmap is to consider the k£ closest nodes in the roadmap in order of increasing
distance from gy, according to the metric dist, and try to connect gy to each of
them with the local planner until one connection succeeds. The number of closest
neighbors considered in algorithm 7 can be different from the one in algorithm 6. The
same procedure is used to connect ggoq to the roadmap.

If the connection of gipi and ggea to the roadmap is successful, the shortest path is
found on the roadmap between ginie and goo according to dist (e.g., using Dijkstra’s
algorithm or the A* algorithm). If one wishes, this path may be improved by running a
smoothing postprocessing algorithm. Figure 7.4 shows the solution to a query solved
with the roadmap from figure 7.3.

In general, the roadmap may consist of several connected components. This is
very likely when Ope. is itself not connected, but it may also happen when Qg is
connected, and the roadmap has not managed to capture the connectivity of Qp.
If the roadmap contains several components, algorithm 7 can be used to connect
both gyt and ggoa to two nodes in the same connected component of the roadmap,
e.g., by giving it as input a single connected component of G. All components of
G should be considered. If the connection of g and ggea to the same connected

206 7 Sampling-Based Algorithms f

Algorithm 7 Solve Query Algorithm
Input:
Gin: the initial configuration
Gsoal: the goal configuration
k: the number of closest neighbors to examine for each configuration
G = (V, E): the roadmap computed by algorithm 6
Output:
A path from ¢ 10 ggoqt OF failure

. N

. < the k closest neighbors of g from V according to dist
: Nygu < the k closest neighbors of gy from V according to dist
2 Vo {Ginit} U {geoal UV
. set g’ to be the closest neighbor of gy, in N,
repeat

if A(qinib ql) # NIL then

E < (g) UE
else
set ¢’ to be the next closest neighbor of gy in N,

end if
: until a connection was succesful or the set Ny, is empty
: set g’ to be the closest neighbor of ggea in Ny,
: repeat
if A(Ggoat, g) # NIL then

E < (Ggoats YV E
else

'set ¢’ to be the next closest neighbor of Ggoal 1N N,
end if
: until a connection was succesful or the set N, ,
: P <= shortest path(Gt, Ggon, G)
: if P is not empty then

return P

: else
return failure
: end if

init

R A o e

init

S S]
R A A R A =

‘goal

—_
%

is empty

NN NN N =

7.1 Probabilistic Roadmaps 207

Ginit
®-- _61

Figure 7.4 An example of how to solve a query with the roadmap from figure 7.3. The
configurations gy and ggoa are first connected to the roadmap through ¢’ and ¢”. Then a
graph-search algorithm returns the shortest path denoted by the thick black lines.

component of the roadmap succeeds, a path is constructed as in the single-component
case. The method returns failure if it cannot connect both gini and ggoa to the same
roadmap component.

Adding to the Roadmap

If path-planning queries fail frequently, the roadmap may not adequately capture the
connectivity of Qgee. When this occurs, the current roadmap can be extended by
resuming the construction step algorithm (exclude lines (1) and (2) from algorithm 6
and pass as a parameter the current roadmap). It should be emphasized again that in
this section we present a very basic PRM. It has been observed for example, that when
trying to connect components biased sampling may be particularly effective [231].
Biased sampling (see Connection Sampling in section 7.1.3) increases the sampling
density in areas of Ope that have good chances to facilitate component connection.

Directed Roadmaps and Roadmaps That Store Local Paths

So far, it has been assumed that A is symmetric and deterministic. It is also possible
to use a local planner A that is neither symmetric nor deterministic.

In many cases, connecting some configuration ¢ to some configuration q’ does not
necessarily imply that the opposite can be done. If the Jocal planner takes the robot
from ¢ to ¢’ and the robot can also execute the path in reverse to go from ¢’ to g,
the roadmap is an undirected graph. Adding the edge (g, ¢) implies that the edge

208

7.1.2

7 Sampling-Based Algorithms

(¢, g) can also be added. If local paths cannot be reversed, a directed roadmap must
be constructed. A separate check must be performed to determine if the edge (¢, q)
can also be added to the roadmap.

A deterministic local planner will always return the same path between two con-
figurations and the roadmap does not have to store the local path between the two
configurations in the corresponding edge. The path can be recomputed if needed to
answer a query. On the other hand, if a nondeterministic local planner is used, the
roadmap will have to associate with each edge the local path computed by A. In
general, the use of nondeterministic local planners increases the storage requirements
of the roadmap. It permits, however, the use of more powerful local planners, which
can be an advantage in certain cases as discussed in section 7.3.

A Practical Implementation of Basic PRM

One of the advantages of the basic PRM algorithm presented in the previous section is
that it is easy to implement and performs well for a variety of problems. This section
focuses on the details of a successful implementation of basic PRM that scales well for
robots with many degrees of freedom. Issues that relate to a practical implementation
of a planner, such as smoothing of the final path, are also discussed. These issues
pertain to all planners in this chapter. The reader is also referred to [246] for details
on implementation details and potential pitfalls.

Sampling Strategy: Uniform Distribution

In basic PRM [231] the nodes of the roadmap constitute a uniform random sampling
of Ofe.. To obtain a configuration, each translational degree of freedom can be drawn
from the interval of allowed values of the corresponding degree of freedom using
the uniform probability distribution over this interval. The same principle applies
to rotational degrees of freedom but care should be taken not to favor specific ori-
entations because of the representation used (see the example at the end of section
7.1.2 and [246]). The main idea is that the sampling distribution should be symmetry
invariant. The sampled configuration is checked for collision. If it is collision-free,
the sample is added to the nodes of the roadmap; otherwise, it is discarded. Collision
checking can be done using a variety of existing general techniques, as mentioned
above.

Sampling from a uniform distribution is the simplest method for generating sample
configurations, but other methods could be used, as we describe below. Section 7.4
offers a theoretical explanation of why sampling from a uniform distribution works
well for many problems.

7.1 Probabilistic Roadmaps 209

Connection Strategy: Selecting Closest Neighbors

Another important choice to be made is that of selecting the set N, of closest neigh-
bors to a configuration ¢. Many data structures have been proposed in the field of
computational geometry that deal with the problem of efficiently calculating the clos-
est neighbors to a point in a d-dimensional space. A relatively efficient method both
in terms of space and time is the kd-tree data structure [124].

A d-dimensional kd-tree uses as input a set S of n points in d dimensions and
constructs a binary tree that decomposes space into cells such that no cell contains
too many points. A kd-tree is built recursively by splitting S by a plane into two
subsets of roughly equal size: S,, which includes points of S that lie to the left of
the plane; and S,, which includes the remaining points of . The plane is stored at
the root, and the left and right child are recursively constructed with input S, and S,,
respectively. Figure 7.5 illustrates the construction of a 2-dimensional kd-tree for ten
points on a plane.

A kd-tree for a set of n points in d dimensions uses O(dn) storage and can be built
in O(dn log n) time. A rectangular range query takes O(n'~@ 4 m) time, where m is
the number of reported neighbors. As d grows large, the cost of using kd-trees becomes
linear. The rectangular range query time can be reduced considerably by introducing
a small approximation error. This modified approach is called Approximate Nearest
Neighbor queries (ANN) and is becoming increasingly popular [30].

Distance Functions and Embeddings

Function dist is used to resolve the k closest neighbors query. It should be defined so
that, for any pair (¢’, ¢”) of configurations, dist(q’, g”) refiects the likelihood that the

ls

w
[]
"3
=
<
[]

p

Iy ® Dg

l3 [J
{
® P4 [J >

(a) The way the plane is subdivided. (b) The corresponding binary tree.

Figure 7.5 A kd-tree for ten points on a plane.

210

7 Sampling-Based Algorithms

local planner will fail to compute a collision-free path between these configurations.
One possibility is to define dist(q’, ¢”) as some measure of the workspace region
swept by the robot, such as the area or the volume, when it moves in the absence
of obstacles along the path A(g’, ¢”). Intuitively, minimizing the swept volume, will
minimize the chance of collision with the obstacles. An exact computation of swept
areas or volumes is notoriously difficult, which is why heuristic metrics generally
attempt to approximate the swept-volume metric (see [19,246]). ‘

An approximate and inexpensive measure of the swept-region can be constructed as
follows. The robot’s configurations ¢’ and ¢” can be mapped to points in a Euclidean
space, emb(g’) and emb(g”), respectively, and the Euclidean distance between them
can be used, i.e.,

dist(q’, q") = || emb(q") — emb(g") || .

A practical choice for the embedding function is to select p > 0 points on the robot,
concatenate them, and create a vector whose dimension is p multiplied by the dimen-
sion of the workspace of the robot. In order to represent a configuration ¢ in the
embedded space, the set of transformations corresponding to this configuration is
applied to the p points, and emb(g) is obtained. Distances can be easily defined
using the equation above. An example is given at the very end of this section. Note,
however, that this choice of embeddings has its shortcomings. In particular, it is not
clear what the number p should be. It is also not clear how to choose p points so
that the exact shape of the robot is taken into account. Furthermore, as is the case
with the swept-volume metric, the embedding does not take into account obstacles.
So even when two configurations are close to one another, connecting them may be
impossible due to obstacles.

For the case of rigid body motion, an alternative solution is to split dist into
two components, one that expresses the distance between two configurations due
to translation and one due to orientation. For example, if X and R represent the trans-
lation and rotation components of the configuration g = (X, R) € SE(3) respectively,
then

dist(q’, q") = wI1X — X"|| + w, f(R', R")

is a weighted metric with the translation component [[X’ — X”|| using a standard
Euclidean norm, and the positive scalar function f(R’, R”) returning typically an
approximate measure of the distance between the rotations R, R” € SO(3). The rota-
tion distance is scaled relative to the translation distance via the weights w, and w,.
A reasonable choice of f(R’, R") is the length of the geodesic curve between R’ and
R”. The selection of an appropriate rotation distance function f(R’, R”) depends on
the representation for the orientation of the robot, such as Euler angles or quaternions.

7.1 Probabilistic Roadmaps ‘ 211

One of the difficulties with this method is deciding proper weight values. Furthermore,
the extension to articulated bodies is not straightforward. A thorough discussion of
metrics for rigid body planning is given in [246].

The choices for the embedding, its dimensionality, and the dist can have a great
effect on the efficiency of the PRM algorithm. Different problems may require dif-
ferent approaches and there is great interest in the motion-planning community in
finding appropriate metrics [19,246] and embeddings for interesting instances of the
generalized mover’s problem.

Local Planner

In section 7.1, it was assumed that A is symmetric and deterministic. This is a design
decision and it is possible to accommodate planners that are nondeterministic, and/or
not symmetric. : :

Another important design decision is related to how fast the local planner should
be. There is clearly a tradeoff between the time spent in each individual call of this
planner and the number of calls. If a powerful local planner is used, it would often
succeed in finding a path when one exists. Hence, relatively few nodes might be
required to build a roadmap capturing the connectivity of Oy sufficiently well to
reliably answer path-planning queries. Such a local planner would probably be rather
slow, but this could be somewhat compensated by the small number of calls needed.
On the other hand, a very fast planner is likely to be less successful. It will require more
configurations to be included in the roadmap and as a result, the local planner is called
more times for the connections between nodes. Each call will be cheaper, however.
In section 7.3, a roadmap technique that uses a powerful local planner is discussed.

The choice of the local planner also affects the query phase. It is important to be
able to connect any given giy;; and g,0q1 configurations to the roadmap or to detect very
quickly that no such connection is possible. This requires that the roadmap be dense
enough that it always contains at least some nodes to which it is easy to connect gy
and g,oq. It thus seems preferable to use a very fast local planner, even if it is not too
powerful, and build large roadmaps with configurations widely distributed over Qee.
In addition, if the local planner is very fast, the same planner can be used to connect
Ginit and ggoq1 to the roadmap at query time. Discussions of the use of different local
planners can be found in [14, 162,203,221].

One popular planner, applicable to all holonomic robots, connects any two given
configurations by a straight-line segment in Q and checks this line segment for
collision. Care should be taken to interpolate the translation and rotation components
separately (see [246]). There are two commonly-used choices for collision checking,
the incremental and the subdivision collision-checking algorithms. In both cases, the

212

7 Sampling-Based Algorithms

line segment, or more generally, any path generated by the local planner between
configurations ¢’ and ¢”, is discretized into a number of configurations (g1, ..., gs),
where ¢’ = g; and ¢” = g,. The distance between any two consecutive configurations
g; and g;.,1 is less than some positive constant step_size. This value is problem spe-
cific and is defined by the user. It is important to note that again sampling is used to
determine if a local path is collision-free. But in this case, sampling is done at a much
finer level than was done for node generation and this is a very important feature of
PRM. In general, the value of step_size needs to be very small to guarantee that all
collisions are found.

In the case of incremental collision checking, the robot is positioned at ¢’ and
moved at each step by step_size along the straight line in Q between ¢’ and ¢q”.
A collision check is performed at the end of each step. The algorithm terminates as
soon as a collision is detected or when ¢” is reached.

In the case of the subdivision collision checking, the middle point g,, of the straight
line in Q between ¢’ and ¢” is first checked for collision. Then the algorithm recurses
on the straight lines between (¢, ¢,,) and (g, ¢”). The recursion halts when a collision
is found or the length of the line segment is less then step_size.

In both algorithms, the path is considered collision-free if none of the intermediate
configurations yields collision. Neither algorithm has a clear theoretical advantage
over the other, but in practice the subdivision collision checking algorithm tends
to perform better [162, 367]. The reason is that, in general, shorter paths tend to
be collision-free. Subdivision collision checking cuts down the length of the local
path as soon as possible. It is also possible to use an adaptive subdivision collision-
checking algorithm that dynamically adjusts step_size. In [376], step_size is
determined by relating the distance between the robot and the workspace obstacles
to the maximum length of the path traced out by any point on the robot. Furthermore,
the method in [376] is exact, i.e., it always finds a collision when a collision exists,
whereas the above discretization techniques may miss a collision if step_size is too
large.

Figure 7.6 illustrates how the incremental and subdivision collision-checking algo-
rithms are sampling the straight line between two configurations ¢’ and ¢”. In this
example, the subdivision algorithm performs a smaller number of collision checks.
If the obstacle had been close to ¢’, then the incremental algorithm would have per-
formed a smaller number of collision checks.

Postprocessing Queries

A postprocessing step may be applied to the path connecting giyi t0 ggoar to improve
its quality according to some criteria. For example, shortness and smoothness might

7.1 Probabilistic Roadmaps 213

qH
7 ’
q

(a) Incremental: The algorithm returns (b) Subdivision: The algorithm returns
failure after five collision checks. failure after three collision checks.

Obstacle Obstacle

Figure 7.6 Sampling along the straight line path between two configurations ¢’ and ¢”. The
numbers correspond to the order in which each strategy checks the samples for collision.

Original Path -------
Shorter Path —

Figure 7.7 Processing the path returned from PRM to get a shorter path with the greedy
approach.)

be desirable. Postprocessing is applicable to any path-planning algorithm, but is pre-
sented here for completeness of the implementation guidelines of the basic PRM.
From a given path, a shorter path could be obtained by checking whether nonadja-
cent configurations ¢; and ¢, along the path can be connected with the local planner.
This idea has been described often in the literature (e.g., [150,383]). The points ¢,
and g, could be chosen randomly. Another alternative would be a greedy approach.
Start from gi and try to connect directly to the target ggoa. If this step fails, start
from the configuration after gy, and try again. Repeat until a connection can be made
t0 Ggoal, Say from the point gg. Now set the target to gy and begin again, trying to
connect from gy L0 go, and repeat the procedure. This procedure can also be applied
toward the opposite direction. Figure 7.7 illustrates the application of the greedy

214

7 Sampling-Based Algorithms

approach in the forward direction to shorten a path in a two-dimensional Euclidean
workspace.

There are various reasons why configurations ¢; and g, along a path may have not
been connected with an edge from the roadmap construction step of PRM. They may
not be close according to the distance function dist, and the k closest neighbor query
may not return them as neighbors. They may, however, be in a relatively uncluttered
part of Q.. and a long edge connecting them may still be possible. These cases will
occur more frequently if the Creating Sparse Roadmaps connection strategy has been
used (see section 7.1.4).

Instead of shortening the path, a different objective may be to get a path with
smooth curvature. A possible approach to this is to use interpolating curves, such as
splines, and use the configurations that have been computed by PRM as the interpolation
points for the curves. In this case, collision checking is performed along the curves
until curves that satisfy both the smoothness properties and the collision avoidance
criteria are found.

Postprocessing steps such as path shortening and path smoothing can improve the
quality of the path, but can also impose a significant overhead on the time that it takes
to report the results of a query. In general, if paths with certain optimality criteria are
desired, it is worth trying to build these paths during the roadmap construction phase
of PRM. For example, a large dense roadmap will probably yield shorter paths than a
smaller and sparser roadmap.

An Example

Figure 7.8(a) shows a motion-planning problem for a robot in a three-dimensional
workspace. The robot is a rigid nonconvex polyhedral object; it can freely translate and
rotate in the workspace as long as it does not collide with the obstacles. The workspace
is made up of a rigid thin wall that has a narrow passage. A bounding box is defined
that contains the wall and is small enough so that it does not allow the robot to move
from one side of the wall to the other without going through the narrow passage. The
goal is to build a roadmap that a planner can use to successively solve motion-planning
queries where giyi; and g0 appear on the two different sides of the wall.

The problem has six degrees of freedom, three translational and three rotational. The
configuration ¢ = (p, r) of the robot can be represented by a point p expressing the
translational component and a quaternion » (see appendix E) expressing the rotational
component. A configuration is generated by picking at random a sample from a
uniform distribution from a subset of allowable positions in R? and picking a random
axis of rotation and a random angle for the quaternion (for details see [246]).

7.1 Probabilistic Roadmaps 215

@ O ®

Figure 7.8 Anexample of a motion-planning problem where both the robot and the obstacles
are a collection of polyhedral objects in three dimensions. Parts of the robot on the other side
of the wall are indicated by the darker color. (a) The initial and goal configuration of the query.
(b) A path produced from a PRM with » = 1000 and k = 10.

In order to find the k closest neighbors of a configuration, configurations are embed-
ded in a space where Euclidean distance is defined. A method that works well in
practice is to choose a pair of points on the surface of the robot that have maximum
distance and construct a six-dimensional vector emb(q) for the robot’s initial config-
uration. If ¢’ is obtained by applying a translation and rotation transformation to ¢,
then emb(gq’) is obtained by applying the same transformations to the pair of points
in emb(q). The distance metric dist is then defined as the Euclidean distance of the
two embeddings.

For every configuration and its k closest counterparts, the subdivision collision-
checking algorithm is used to check if the straight line in @ is collision-free. Inter-
mediate configurations between ¢’ = (p’,r’) and ¢” = (p”, r") are obtained by
performing linear interpolations on p’ and p” and spherical interpolations on 7" and
r". The edge (¢', ¢”) is added to the roadmap when all the intermediate configurations
are collision-free.

When the roadmap has been completed, it can be used to solve user-specified
queries. The k closest neighbors for the query points are calculated and the local
planner attempts to connect gy and ggoa to them. As soon as they are connected to
the same component, an A* algorithm is run on the graph to find the path. Figure 7.8(b)
shows intermediate configurations of a path returned by the above procedure.

216

7.1.3

7 Sampling-Based Algorithms

PRM Sampling Strategies

Several node-sampling strategies have been developed over the years for PRM. For
many path-planning problems, a surprisingly large number of general sampling
schemes will provide reasonable results (see e.g., the comparison of sampling schemes
given in [162]). The analysis of section 7.4 provides some insight as to why this is
the case. Intuitively, many planning problems in the physical world are difficult but
not “pathological” (as in the kind of problem one encounters in NP-hardness proofs).
Without doubt, however, the choice of the node-sampling strategy can play a signifi-
cant role in the performance of PRM. This was observed in the original PRM publica-
tions which suggested mechanisms to generate samples in a non-uniform way [231].
Increasing the density of sampling in some areas of the free space is referred to as
importance sampling and has been repeatedly demonstrated to increase the observed
performance of PRM. In this section we describe several node-sampling schemes.

The uniform random sampling used in early work in PRM is the easiest sampling
scheme to implement. As a random sampling method, it has the advantage that, in the-
ory, a malicious opponent cannot defeat the planner by constructing carefully crafted
inputs. It has the disadvantage, however, that, in difficult planning examples, the run-
ning time of PRM might vary across different runs. Nevertheless, random sampling
works well in many practical cases involving robots with a large number of degrees
of freedom.

There exist cases where uniform random sampling has poor performance. Often,
this is the result of the so-called narrow passage problem. If a narrow passage exists
in Qe and it is absolutely necessary to go through that passage to solve a query,
a sampling-based planner must select a sample from a potentially very small set in
order to answer the planning query. A number of different sampling methods have
been designed with the narrow passage problem in mind and are described below.
The narrow passage problem still remains a challenge for PRM planners and is an
active area of research.

The remainder of this section describes sampling strategies that have been devel-
oped with the narrow passage problem in mind and then other general sampling
strategies. We conclude the section with a brief discussion of how one might select
an appropriate sampling scheme for a particular problem.

Sampling Near the Obstacles

Obstacle-based sampling methods sample near the boundary of configuration-space
obstacles. The motivation behind this kind of sampling is that narrow passages can
be considered as thin corridors in Oy, surrounded by obstacles.

7.1 Probabilistic Roadmaps 217

OBPRM [18] is one of the first and very successful representatives of obstacle-based
sampling methods. Initially, 0BPRM generates many configurations at random from
a uniform distribution. For each configuration g;, found in collision, it generates a
random direction v, and the planner finds a free configuration g,y in the direction v.
Finally, it performs a simple binary search to find the closest free configuration g to
the surface of the obstacle. Configuration ¢ is added to the roadmap, while g, and
Gou are discarded.

The Gaussian sampler [59] addresses the narrow passage problem by sampling from
a Gaussian distribution that is biased near the obstacles. The Gaussian distribution is
obtained by first generating a configuration ¢; randomly from a uniform distribution.
Then a distance step is chosen according to a normal distribution to generate a
configuration g; atrandom at distance step from ¢; . Both configurations are discarded
if both are in collision or if both are collision-free. A sample is added to the roadmap
if it is collision-free and the other sample is in collision.

In [194], samples are generated in a dilated Qge. by allowing the robot to penetrate
by some small constant distance into the obstacles. The dilation of Q.. widens narrow
passages, making it easier for the planner to capture the connectivity of the space.
During a second stage, all samples that do not lie in Qe are pushed into Qg by
performing local resampling operations.

Sampling Inside Narrow Passages

The bridge planner [193] uses a bridge test to sample configurations inside narrow
passages. In a bridge test, two configurations ¢’ and ¢” are sampled randomly from
a uniform distribution in ©. These configurations are considered for addition to the
roadmap, but if they are both in collision, then the point ¢, halfway between them
is added to the roadmap if it is collision free. This is called a bridge test because the
line segment between ¢’ and ¢” resembles a bridge with ¢’ and ¢” inside obstacles
acting as piers and the midpoint g, hovering over Qg... Observe that the geome-
try of narrow passages makes the construction of short bridges easy, while in open
space the construction of short bridges is difficult. This allows the bridge plan-
ner to sample points inside narrow passages by favoring the construction of short
bridges.

An efficient solution to the narrow passage problem would generate samples that are
inside narrow passages but as far away as possible from the obstacles. The Generalized
Voronoi Diagrams (GVDs) described in chapter 5 have exactly this property. Although
exact computation of the GVD is impractical for high-dimensional configuration
spaces, it is possible to find samples on the GVD without computing it explicitly. This
can be done by a retraction scheme [427]. The retraction is achieved by a bisection

218

-

7 Sampling-Based Algorithms

method that moves each sample configuration until it is equidistant from two points
on the boundary of Qgee.

A simpler approach is to compute the GVD of the workspace and generate sam-
ples that somehow conform to this GVD [155,171,191]. For example, the robot can
have some predefined handle points (e.g., end-points of the longest diameter of the
robot) and sampling can place those handle points as close to the GVD as possible
with the hope of aligning the whole robot with narrow passages. The disadvantage of
workspace-GVD sampling is that it is in general difficult to generate configurations
of the robot close to the GVD (details are given in [155,171, 191]). The advantage
of workspace-GVD sampling is that the GVD captures well narrow passages in the
workspace that typically lead to narrow passages in Qpee. Additionally, an approx-
imation of the GVD of the workspace can be computed efficiently using graphics
hardware [352] which is one of the reasons why this sampling method is popular for
virtual walkthroughs and related simulations.

Visibility-Based Sampling

The goal of the visibility-based PRM [337] is to produce visibility roadmaps with a
small number of nodes by structuring the configuration space into visibility domains.
The visibility domain of a configuration ¢ includes all configurations that can be
connected to ¢ by the local planner. This planner, unlike PRM which accepts all the
free configurations generated in the construction stage, adds to the roadmap only
those configurations ¢ that satisfy one of two criteria: (1) ¢ cannot be connected to
any existing node, i.e., ¢ is a new component, or (2) g connects at least two existing
components. In this way, the number of configurations in the roadmap is kept small.

Manipulability-Based Sampling

Manipulability-based sampling [281, 282] is an importance-sampling approach that
exploits the manipulability measure associated with the manipulator Jacobian [432].
Intuitively, manipulability characterizes the arm’s freedom of motion for a given con-
figuration. The motivation for using manipulability as a bias for sampling is as follows.
In regions of the configuration space where manipulability is high, the robot has great
dexterity, and therefore relatively fewer samples should be required in these areas.
Regions of the configuration space where manipulability is low tend to be near (or to
include) singular configurations of the arm. Near singularities, the range of possible
motions is reduced, and therefore such regions should be sampled more densely.
Let J(q) denote the manipulator Jacobian matrix (i.e., the matrix that relates veloc-
ities of the end effector to joint velocities). For a redundant arm (e.g., an arm with

(7.1)

7.1 Probabilistic Roadmaps 219

more than six joints for a 3D workspace) the manipulability in configuration ¢ is
given by

w(q) = +/det J(g)JT(q).

To bias sampling, an approximation to the cumulative density function (CDF) for
w is created. Samples are then drawn from a uniform density on the configuration
space, and rejected with probability proportional to the associated CDF value of their
manipulability value.

Quasirandom Sampling

A number of deterministic (sometimes called quasirandom) alternatives to random
sampling have been used [62,269,291,292]. These alternatives were first introduced
in the context of Monte Carlo integration and aim to optimize various properties of the
distribution of the samples. Before discussing some of these alternatives, we briefly
describe two ways to evaluate a set of samples.

Let P be a set of point samples on some space X, and N be the number of points in
P. One way to evaluate the quality of the samples in P is to assess how “uniformly”
the points in P cover X. This is done with respect to a specific collection of subsets of
X, called arange space, denoted by R. Let R be the set of all axis-aligned rectangular
subsets of X, and define 1 to be the measure (or volume) of a set. Since P contains
N points, the difference between the relative volumes of R to X and the fraction of
samples contained in R € R is given by

uW(R) |PNR]|
m(X) N
If we take the supremum of this difference over all R € R we obtain the concept of
discrepancy.

DEFINITION 7.1.1 The discrepancy of point set P with respect to range space R over
some space X is defined as

W(R) _|PNR] ‘
p(X) N |

D(P,R) = sup
ReR

It is not necessary to take R as the subset of axis-aligned rectangles, but this choice
gives an intuitive understanding of discrepancy. Another common choice is to take
R as the set of d-balls, i.e., for each R € R we have R = {x’ | |[x — x'|| < ¢}, for
some point x and radius € > 0.

While discrepancy provides a measure of how uniformly points are distributed over
the space X, dispersion provides a measure of the largest portion of X that contains

220

7 Sampling-Based Algorithms

no points in P. For a given metric p, the distance between a point x € X and a point
p € P is given by p(x, p). Thus, minyep p(x, p) gives the distance from x to the
nearest pointin P. If we take p to be the Euclidean metric, this gives the largest empty
ball centered on x. If we then take the minimization over all points in X, we obtain
the size of the largest empty ball in X. This is exactly the concept of dispersion.

DEFINITION 7.1.2 The dispersion § of point set P with respect to the metric p is
givenby

8(P, p) = supmin p(x, p).
xeX peP

An important result due to Sukharev gives a bound on the number of samples
required to achieve a given dispersion. In particular, the Sukharev sampling criterion
states that when p is taken as the L, norm, a set P of N samples on the d-dimensional
unit cube will have

S(P, p) > —.
(/>)>2LNZJ

So, to achieve a given dispersion value, say &*, since N must be an integer, we have

5 = ! —>N><1 ’
T 2|Nid| —\28+)

i.e., the number of samples required to achieve a desired dispersion grows expo-
nentially with the dimension of the space. In some sense, this result implies that to
minimize dispersion, sampling on a regular grid will yield results that are as good as
possible.

Now that we have quantitative measures for the quality of a set of samples, we
describe some common ways to generate samples. For the case of X = [0, 1] the
Van der Corput sequence gives a set of samples that minimizes both dispersion and
discrepancy. The n'* sample in the sequence is generated as follows. Let a; € {0, 1}
be the coefficients that define the binary representation of n,

n:ZaiZi =ag+ a2+ a2+ .

The n'" element of the Van der Corput sequence, ®(n), is defined as

O(n) =Y a2 =027 + a2+

Figure 7.9(a) shows the first sixteen elements of a Van der Corput sequence.
The Van der Corput sequence can only be used to sample the real line. The Halton
sequence generalizes the Van der Corput sequence to d dimensions. Let {b;} define

7.1 Probabilistic Roadmaps

221

n n (binary) ®(n) (binary) ®(n) n by(n) ®(n)
0 0 0.0 0 0 0 0
1 1 0.1 172 1 173 172
2 10 0.01 1/4 2 2/3 1/4
3 11 0.11 3/4 3 1/9 3/4
4 . 100 0.001 178 4 4/9 1/8
5 -~ 101 0.101 5/8 5 7/9 5/8
6 110 0.011 378 6 2/9 3/8
7 111 0.111 7/8 7 5/9 7/8
8 1000 0.0001 1/16 8 8/9 1/16
9 1001 0.1001 9/16 9 1/27 9/16
10 1010 0.0101 - 5/16 10 10/27 5/16
11 1011 0.1101 13/16 11 19/27 13/16
12 1100 0.0011 3/16 12 4/27 3/16
13 1101 0.1011 11/16 13 13727 11/16
14 1110 0.0111 7/16 14 22/27 7/16
15 1111 0.1111 15/16 15 727 15/16
(a) (b)

Figure 7.9 (a) Van der Corput sequence, (b) Halton sequence for d = 2.

a set of d relatively prime integers, e.g., by = 2,by, =3,b3 =5, b4 =17,....
integer n has a representation in base b; given by

n=Za,-jb;, (lijG{O, 1,...,1’)]'-—-1}

and @, (n) is defined as
(Dbj (l’l) —_— Zaijb;(i+l)~

The n** sample is then defined by the coordinates p, = (®y,(n), p,(n), - -

The

-5 Ppy(n)).

Figure 7.9(b) shows the first sixteen elements of a Halton sequence for b; = 2, b, = 3.
When the range space R is a set of axis-aligned rectangular subsets of X, the

discrepancy for the Halton sequence is bounded by

).

D(P,R)< 0O (

log? N

222

7 Sampling-Based Algorithms

Figure 7.10 These figures shows 1024 samples generated in the plane using (a) a random
number generator, (b) a Halton sequence, (¢} a Hammersley sequence.

When the range space R is the set of d—balls, the discrepancy is bounded by
@+
D(P,R) < O (N‘T) .

When N is specified, a Hammersley sequence (sometimes called a Hammersley
point set, since the number of points is known and finite) achieves the best possible
asymptotic discrepancy. The n™ point in a Hammersley sequence is obtained by using
the first d — 1 coordinates of a point in the Halton sequence, with the ratio n/N as
the first coordinate,

DPn = (n/Na CDbl(n)’ (Dbz(n)’ e cbbd_](n)), n=0...N—1.

Figufe 7.10 shows point sets generated using a random number generator (fig-
ure 7.10a), a Halton sequence (figure 7.10b), and a Hammersley sequence (fig-
ure 7.10c). Each point set contains 1024 points.

The use of quasirandom sequences has the advantage that the running time is
guaranteed to be the same for all the runs due to the deterministic nature of the point
generation process. The resulting planner is resolution complete. The analysis of
section 7.4 also sheds light as to why quasirandom sequences work well. As with any
deterministic sampling method however, it is possible to construct examples where
the performance of the planner deteriorates. As a remedy, it has been suggested
to perturb the sequence [162]. The perturbation is achieved by choosing a random
configuration from a uniform distribution in a small area around the sample point
being added to the sequence. The area is gradually reduced as more points are added
to the sequence. Certain quasirandom sequences can also be seen as generating points
in a multiresolution grid in @ [269].

7.1 Probabilistic Roadmaps 223

Grid-Based Sampling

Grid-based planners have appeared in the early planning literature [244,274] but did
not use some key abstractions of PRM such as the collision checking primitives. The
nodes of a grid can be an effective sampling strategy in the PRM setting. Especially
when combined with efficient node connection schemes (see section 7.1.4), they can
result in powerful planners for problems arising in industrial settings [52]. A natural
way of using g;rrid—based search in a PRM is to use a rather coarse resolution for the
grid and take advantage of the collision-checking abstraction; moving from one grid
node ¢ to a neighboring grid node ¢’ would require collision checking, and hence
sampling, at a finer resolution between the nodes. During the query phase, attempts
are made to connect giic and g0 to nearby grid points. The resolution of the grid that
is used to build the roadmap can be progressively increased either by adding points
one at a time or by adding an entire hyperplane of samples chosen to fill the largest gap
in the existing grid [52]. Of particular interest for path planning is the use of infinite
sequences based on regular structures, which incrementally enhance their resolution.
Recent work has demonstrated the use of such sequences for building lattices and other
regular structures that have an implicit neighborhood structure, which is very useful
for PRMs [269,291]. A grid-based path-planning algorithm is resolution complete.

Connection Sampling

Connection sampling [221,231] generates samples that facilitate the connection of
the roadmap and can be combined with all previously described sampling methods.
Typically, if a small number of configurations is initially generated, there may exist a
few disconnected components at the end of the construction step. If the roadmap under
construction is disconnected in a place where Oy, is not, this place may correspond to
some difficult area of Qgee, possibly to a narrow passage of Q... The idea underlying
connection sampling is to select a number of configurations from the roadmap that
are likely to lie in such regions and expand them. The expansion of a configuration
g involves selecting a new free configuration in the neighborhood of ¢ as described
below, adding this configuration to the roadmap, and trying to connect it to other
configurations of the roadmap in the same manner as in the construction step. The
connection sampling step increases the density of the roadmap in regions of Qpee
that are believed to be difficult. Since the gaps between components of the roadmap
are typically located in these regions, the connectivity of the roadmap is likely to
increase. Connection sampling thus never creates new components in the roadmap.
At worst, it fails to reduce the number of components.

A simple probabilistic scheme can be used for connection sampling. Each config-
uration ¢ is associated with a heuristic measure of the difficulty of the region around

224

7 Sampling-Based Algorithms

g expressed by a positive weight w(g). Thus, w(q) is large whenever ¢ is considered
to be in a difficult region. Weights are normalized so that their sum for all configura-
tions in the roadmap is one. Then, repeatedly, a configuration ¢ is selected from the
roadmap with probability

Pr(q is selected) = w(q),

and then g is expanded. The weights can be computed only once at the beginning of
the process and not modified when new configurations are added to the roadmap, or
can be modified periodically.

There are several ways to define the heuristic weight w(g) [221,231]. A function
that has been found to work well in practice is the following. Let deg(q) be the number
of configurations to which ¢ is connected. Then,

1
deg(g)+1
wigq) = i

ey Ty

The expansion of a configuration ¢ requires the generation of a configuration in the
neighborhood of ¢. Typically, such a configuration can be found easily by selecting
values for the degrees of freedom of the robot within a small interval centered at the
values of the corresponding degrees of freedom of g. If this fails, a small random-
bounce walk may be used to arrive at a new collision-free configuration. For holonomic
robots, a random-bounce walk [231] from g consists of repeatedly picking at random
a direction of motion and moving in this direction until an obstacle is hit. When a
collision occurs, a new random direction is chosen. The above steps are repeated for
anumber of times. The configuration ¢’ reached by the random-bounce walk and the
edge (q; q') are inserted into the roadmap. Moreover, the path computed between g
and ¢’ is explicitly stored, since it was generated by a nondeterministic technique.
The fact that g’ belongs to the same connected component as g is also recorded. Then
attempts are made to connect g’ to the other connected components of the roadmap
in the same way as in the construction step of PRM.

Choosing Among Different Sampling Strétegies

Choosing among different sampling strategies is an open issue. Here, we give some
very rough guidelines on how to choose a sampling strategy.

The success of PRM should be partly attributed to the fact that for a large range of
problems (difficult but not “pathological” problems—see section 7.4) several simple
sampling strategies work well. For example, uniform random sampling works well for
many problems found in practice involving 3—7 degrees of freedom. If consistency
in the running time is an issue, quasirandom sampling and lattice-based sampling

7.1.4

7.1 Probabilistic Roadmaps 225

provide some advantages. When the dimension grows, and again for problems that do
not exhibit pathological behavior, random sampling is the simplest way to go. When
problems that have narrow passages are considered, sampling-based strategies that
were designed with narrow passages in mind should be used.

Combinations of different sampling methods are possible and in many cases critical
for success. If w4 and mp are two different sampling methods, a weighted hybrid
sampling method 7 can be produced by setting w = (1 —w)m4 + wmg. For example,
connection sampiing could be used in combination with random sampling [231] or
OBPRM sampling. One sampling strategy can also be considered a filter for another.
For example, the Gaussian sampler can be used to filter nodes created according to
the bridge test [263].

None of the sampling methods described in this chapter provides clearly the best
strategy across all planning problems. Sampling should also be considered in relation
with the connection strategy used (see section 7.1.4) and the local planner used (see
[14,162,203,221] and section 7.3). Finally, it must be emphasized that it is possible
to create “pathological” path-planning instances that will be arbitrarily hard for any
sampling-based planner.

PRM Connection Strategies

An important aspect of PRM is the selection of pairs of configurations that will be tried
for connections by a local planner. The objective is to select those configurations
for which the local planner is likely to succeed. As has been discussed, one possible
choice is to use the local planner to connect every configuration to all of its k closest
neighbors. The rationale is that nearby samples lead to short connections that have
good chances of being collision free. This section discusses some other approaches,
their advantages and disadvantages. Clearly, the function used to select the neighbors
and the implemented local planner can drastically affect the performance [19,246] of
any connection strategy described in this section.

Creating Sparse Roadmaps

A method that can speed up the roadmap construction step is to avoid the computation
of edges that are part of the same connected component [231,404]. Since there exists
a path between any two configurations in a connected component, the addition of the
new edge will not improve the connectivity of the roadmap. Several implementations
of this idea have been proposed. The simplest is to connect a configuration with the
nearest node in each component that lies close enough. This method avoids many
calls to the local planner and consequently speeds up the roadmap construction step.

226

7 Sampling-Based Algorithms

As the graph is being built, the connected components can be maintained by using a
fast disjoint-set data structure [119].

With the above method, no cycles can be created and the resulting graph is a forest,
i.e., a collection of trees. Since a query would never succeed due to an edge that is
part of a cycle, it is indeed sensible not to consume time and space computing and
storing such an edge. In some cases, however, the absence of cycles may lead the
query phase to construct unnecessarily long paths. This drawback can be mitigated
by applying postprocessing techniques, such as smoothing, on the resulting path.
It has been observed however that allowing some redundant edges to be computed
during the roadmap construction phase (e.g., two or three per node) can significantly
improve the quality of the original path without significant overhead [162]. Recent
work shows how to add useful cycles in PRM roadmaps that result in higher quality
(shorter) paths [336].

Connecting Connected Components

The roadmap constructed by PRM is aimed at capturing the connectivity of Qgee.
In some cases, due to the difficulty of the problem or the inadequate number of
samples being generated, the roadmap may consist of several connected compo-
nents. The quality of the roadmap can be improved by employing strategies aimed at
connecting different components of the roadmap. Connection sampling, introduced
in section 7.1.3, attempts to connect different components of the roadmap by plac-
ing more nodes in difficult regions of OQg... Section 7.2 describes sampling-based
tree planners that can be very effective in connecting different components of the
roadmap. This is exploited in the planner described in section 7.3. Random walks and
powerful planners such as RPP [40] can also be used to connect components [221].
Other strategies are described in [323].

Lazy Evaluation

The idea behind lazy evaluation is to speed up performance by doing collision checks
only when it is absolutely necessary. Lazy evaluation can be applied to almost all
the sampling-based planners presented in this chapter [52-54]. In this section, lazy
evaluation is described as a node connection scheme. It has also given rise to very
effective planners that will be described in the next section.

When lazy evaluation is employed, PRM operates on a roadmap G, whose nodes
and paths have not been fully evaluated. It is assumed that all nodes and all edges
of a node to its k neighbors are free of collisions. Once PRM is presented with a
query, it connects gipi and ggoq to two close nodes of G. The planner then performs a

7.2

7.2 Single-Query Sampling-Based Planners 227

graph search to find the shortest path between gigy; and g4, according to the distance
function used. Then the path is checked as follows. First, the nodes of G on the path
are checked for collision. If a node is found in collision, it is removed from G together
with all the edges originating from it. This procedure is repeated until a path with
free nodes is discovered. The edges of that path are then checked. In order to avoid
unnecessary collision checks, however, all edges along the path are first checked at
a coarse resolution, and then at each iteration the resolution becomes finer and finer
until it reaches the desired discretization. If an edge is found in collision, it is removed
from G. The process of finding paths, checking their nodes and then checking their
edges is repeated until a free path is found or all nodes of G have been visited. Once
it is decided that a node of G is in Qgee, this information is recorded to avoid future
checks. For the edges, the resolution at which they have been checked for collision
is also recorded so that if an edge is part of a future path, collision checks are not
replicated. If no path is found and the nodes of G have been exhausted, new nodes
and edges can be added to G. The new nodes can be sampled not only randomly but
also from the difficult regions of Qp.. [54]. This kind of sampling is similar to the
connection sampling strategy of PRM described in section 7.1.3.

A related lazy scheme [335] assigns a probability to each edge of being collision
free. This probability is computed by taking into account the resolution at which the
edge has been checked. The edge probabilities can be used to search for a path in G
that has good chances of being in Qgee.

Single-Query Sampling-Based Planners

PRM was originally presented as a multiple-query planner: the goal was to create a
roadmap that captures the connectivity of Qg and then answer multiple user-defined
queries very fast. In many planning instances, the answer to a single query is of interest
and these instances are best served by single-query planners. Single-query planners
attempt to solve a query as fast as possible and do not focus on the exploration of the
entire Qfec.)

Many efficient single-query sampling-based planners exist. Some of them preceded
PRM. One of the first widely used sampling-based planners was RPP [40]. RPP works
by constructing potential fields over the workspace that attract control points of the
robot to their corresponding positions in the goal configuration while pushing these
robot points away from the obstacles (see also chapter 4). The workspace potentials
are combined using an arbitration function to generate a configuration space potential.
Starting from the initial configuration RPP performs a gradient motion until it reaches a
local minimum. If the goal configuration has not been reached, RPP executes a series

228

7 Sampling-Based Algorithms

of random motions to escape the local minimum. In this way, RPP incrementally
builds a graph of local minima, where the path joining two local minima is obtained
by concatenating a random motion and a gradient descent motion. “Ariadne’s clew”
is another algorithm that uses samples in the configuration space [47,48]. The algo-
rithm works by interleaving the exploration of Q with searches for paths to the goal
configuration. “Ariadne’s clew” builds a tree from the initial configuration, During
exploration, new configurations are placed in Qfr. as far as possible from one another.
The selection of configurations can be difficult and is done through genetic optimiza-
tion. For each new configuration, a local search is performed to determine if the goal
configuration is reachable from it. Many other algorithms (e.g., [33, 102, 165,204])
explored the idea of planning by generating sample points in QOpe., but will not be
presented in this chapter due to space limitations. The planner in [204] called the
2Z-method bears some similarities with PRM.

PRMitself can also be used as single-query planner. In that case, giyi and ggoq should
be inserted to the roadmap at the beginning. The planner should check periodically if
the given query can be solved, that is if giy; and ggoq belong to the same component
of the roadmap. At that point, the construction of the roadmap should be aborted.
The sampling and connections strategies described in section 7.1 are all applicable
here. In particular, the careful application of lazy evaluation has yielded an effective
single-query PRM planner, which is called LazyPRM [52-54]. LazyPRM “creates” a
roadmap whose nodes and edges have not been checked for collision. The planner
performs a standard search to find a path from the initial to the goal configuration and
starts checking the path for collisions as described in section 7.1.4. The planner stops
when a collision-free path has been found and it was shown experimentally that this
was achieved well before the roadmap was fully checked [53].

This section describes two planners that were designed primarily for single-query
planning. The planners are Expansive-Spaces Trees (ESTs) [192, 195, 196, 235] and
Rapidly-exploring Random Trees (RRTs) [249,270-272]. These planners also have the
advantage that they are very efficient for kinodynamic planning (see section 7.5 and
chapters 10, 11, and 12). For the moment, we concentrate on geometric path-planning.

ESTs and RRTs bias the sampling of configurations by maintaining two trees, Tiy
and Ty, rooted at ginie and ggoq configurations, respectively, and then growing the
trees toward each other until they are merged into one. It is possible to construct only
a single tree rooted at gy, that grows toward ggoq, but, for geometric path-planning,
this is usually less efficient than maintaining two trees. In the construction step,
new configurations are sampled from Q.. near the boundaries of the two trees. A
configuration is added to a tree only if it can be connected by the local planner to
some existing configuration in the tree. In the merging step, a local planner attempts

7.2 Single-Query Sampling-Based Planners 229

to connect pairs of configurations selected from both trees. If successful, the two trees
become one connected component and a path from giny t0 ggoal is returned.

For answering a single query, it is necessary to cover only the parts of Q.. relevant
to the query. ESTs and RRTs developed sampling strategies that bias the sampling of
the configurations toward the unexplored components of Qy.. relevant to the query.
The introduced sampling methods are fundamentally conditional: the generation of
a new conﬁguratiori depends on the initial and goal configuration and any previ-
ously generated configurations. The planners, however, are faced with the following
dilemma: although it is important to search the part of Q.. thatis relevant to the given
query, the planners need to demonstrate that their sampling can potentially cover the
whole Qpge.. This is necessary for ensuring probabilistic completeness. ESTs are a
purely forward projection/propagation method. An EST pushes the constructed tree
to unexplored parts of Q.. by sampling points away from densely sampled areas. A
rigorous analysis shows that Qg.. will be covered under certain assumptions [192].
RRTs employ a steering strategy that pulls the tree to unexplored parts of Qge.. An RRT
attempts to expand toward points in the free configuration space away from the tree.
The algorithm has been shown to be probabilistically complete under certain assump-
tions [271]. Figure 7.11 shows a single tree expanded from giy; using a variant of
EST [350].

At the end of this section, the SBL [367] planner is described. SBL is a bi-directional
EST that uses lazy evaluation for its node connection strategy. This allows the planner
to explore the free space very efficiently and at the same time reduce the number of
collision checks with further performance improvements over traditional ESTs.

Figure 7.11 Tree generated by a tree-based motion planner for docking a space shuttle at the
space station. (From Phillips and Kavraki [350].)

230

7.21

7 Sampling-Based Algorithms

Expansive-Spaces Trees

ESTs were initially developed as an efficient single-query planner that covers the space
between gini and ggoa rapidly [192,195, 196, 235]. The developers of the algorithm
did not use the acronym EST in their original publications. The acronym was later
adopted and was inspired by the notion of “expansive” space used in the theoretical
analysis of the algorithm. EST was initially geared toward kinodynamic problems,
and for these problems a single tree is typically built (see section 7.5.1). A number of
recent planners are based on or use ESTs [14,350,367]. The EST algorithm has been
shown to be probabilistically complete [192].

Construction of Trees

Let T be one of the trees Tipi OF Tgom rooted at Gy and geom, respectively. The
planner first selects a configuration ¢ in 7" from which to grow 7' and then samples
a random configuration, g, from a uniform distribution in the neighborhood of g.
Configuration ¢ is selected at random with probability 7(g). The local planner A
(see section 7.1) attempts a connection between g and gng. If successful, grang is added
to the vertices of T and (g, ¢rung) is added to the edges of T'. The process is repeated
until a specified number of configurations has been added to T'. The pseudocode is
given in algorithms 8 and 9. Figure 7.12 illustrates this method in the simple case of
a point robot in a two-dimensional Euclidean workspace.

Recall that in the roadmap construction of PRM, algorithm 6 in section 7.1, a new
random configuration in Qge.. is never rejected but it is immediately added to the

Algorithm 8 Build EST Algorithm
Input:
qgo: the configuration where the tree is rooted
n : the number of attempts to expand the tree
Output:
Atree T = (V, E) that is rooted at gp and has < n configurations
V < {qo}
E <0
fori = 1tondo
g < arandomly chosen configuration from 7" with probability 77 (q)
extend EST (7, q)
end for
return T

A A T

7.2 Single-Query Sampling-Based Planners 231

Algorithm 9 Extend EST Algorithm
Input:
T =(V, E): anEST
q: a configuration from which to grow T
Output:
A new configuration ¢y in the neighborhood of ¢, or NIL in case of failure

Gnew < arandom collision-free configuration from the neighborhood of ¢
if A(g, guew) then
V <~ V U {erew}

E <~ EU{(g, gnew)}
return ¢y

. end if
: return NIL

9rand

Figure 7.12 Adding a new configuration to an EST. Suppose ¢ is selected and g/, , is created
in its neighborhood. The local planner succeeds in connecting g to g,,4. Configuration ¢/,
and the edge (g, g;,,4) are added to the tree T. Had gJ;, been created, no nodes or edges would

have been added to T, as the local planner would have failed to connect ¢ and g% ;.

roadmap. No attempts are made to connect it to existing configurations in the roadmap.
In contrast, in the construction step of EST, a new configuration is added to T only
if A succeeds in connecting it to an existing configuration in 7. It follows then that
there is a path from the root of 7 to every configuration in 7'.

Guiding the Sampling

The effectiveness of EST relies on the ability to avoid oversampling any region of Qe
especially the neighborhoods of gy and ggoal- Hence, careful consideration is given

232

7 Sampling-Based Algorithms

to the choice of the probability density function 77. Ideally, the function 77 should
be chosen such that the sampled configurations constitute a rather uniform covering
of the connected components of Qg containing ginic and ggoa. A good choice of &
is biased toward configurations of 7 whose neighborhoods are not dense. There are
several ways to measure the density of a neighborhood. One that works well in practice
associates with each configuration g of T a weight, wr(q), that counts the number of
configurations within some predefined neighborhood of q. If w7(g) is defined to be
inversely proportional to wz(g), then configurations with sparse neighborhoods are
more likely to be picked by the planner and used as input to algorithm 9.

The naive method to compute 77 (g) enumerates all the configurations of 7 and tests
if they are close to ¢. This method takes linear time in the number of configurations, n,
in the tree T and works well only for relatively small n. A reasonable approximation
to mr(g) can be obtained by imposing a grid on Q. At each iteration, the planner
selects the configuration from which to grow the tree by choosing at random a cell
and a configuration from this cell. This method was used in [367] and is described in
subsection 7.2.3.

Several other 777 functions have been proposed. In [349,350], w7r(q) is defined to
be a function of the order in which ¢ is generated, its number of neighbors, its out
degree, and an A* cost function A’ .. The A% is commonly used in graph search
to focus the search toward paths with low cost and is computed as the sum of the
total cost from the root of the tree to ¢ and the estimated cost from ¢ to the goal
configuration. The above weight function combines in a natural way standard EST
heuristics with potential field methods.

Merging of Trees

The merging of the trees is achieved by pushing the exploration of the space from
one tree toward the space explored by the other tree. Initially, a configuration in Tiny
is used as described in algorithm 9 to produce a new configuration g. Then the local
planner attempts to connect g to its closest k configurations in Ty... If a connection is
successful, the two trees are merged. Otherwise, the trees are swapped and the process
is repeated for a specified number of times. Figure 7.13 illustrates the merging of two
EST trees in a simple case of a two-dimensional Euclidean space.

The merging of the two trees is obtained by connecting some configuration ¢; €
Tiny; to some configuration g, € Tgom by using the local planner A. Thus, the path
between ginic and ggoa1, Which are the roots of the corresponding trees, is obtained by
concatenating the path from gt to g1 in Tiyi; to the path from g t0 ggoa i Tyoar.

Care should be taken when implementing ESTs. A successful implementation
requires a fast update of 7 as new configurations are added to 7'. The linear cost of the

7.2.2

7.2 Single-Query Sampling-Based Planners 233

Figure 7.13 Merging two EST trees. Configuration ¢ is just added to the first tree, Tiy;;. The
local planner attempts to connect g to its closest configurations x and y in the second tree,
Tyou- The local planner fails to connect g to x, but succeeds in the case of y.

naive method is too high and grid-based approaches or hashing methods (such as those
described in section 7.2.3) must be employed for large n and high-dimensional Q.

Rapidly-Exploring Random Trees

RRTs were introduced as a single-query planning algorithm that efficiently covers the
space between ginie and ggou [249,270~272]. The planner was again initially developed
for kinodynamic motion planning, where, as in the case of ESTS, a single tree is built.
The applicability of RRTs extends beyond kinodynamic planning problems. The RRT
algorithm has been shown to be probabilistically complete [271].

Construction of Trees

Let T be one of the trees Ty or Tyoa rooted at gin and ggoa, respectively. Each
tree T is incrementally extended. At each iteration, a random configuration, gang, 18
sampled uniformly in Qge.. The nearest configuration, gpear, 10 Grana in T is found
and an attempt is made to make progress from ey toward grand. Usually this entails
moving ¢ne.r a distance step.size in the straight line defined by gnear and Grang.
This newly generated configuration, gnew, if it is collision-free, is then added to the
vertices of T, and the edge (gnear>¢new) i added to the edges of T. The pseudocode
is given in algorithms 10 and 11. Figure 7.14 illustrates the extension step of an RRT
for a point robot operating in a two-dimensional Euclidean workspace.

The sampling is done by algorithm 11, which produces a new configuration,
Guew- a8 a result of moving some configuration gne,r by step_size toward a con-
figuration ¢png. A natural question to consider is how step._size is determined.

234 7 Sampling-Based Algorithms

Algorithm 10 Build RRT Algorithm
Input:
qo: the configuration where the tree is rooted
n : the number of attempts to expand the tree
Output:
A tree T = (V, E) that is rooted at g; and has < n configurations
: V< {q0}
E <@
fori = 1tondo
Grand < arandomly chosen free configuration
extend RRT (T, ¢yang)
end for
return 7

A A o e

Algorithm 11 Extend RRT Algorithm
Input: :

T =(V, E): an RRT

q: a configuration toward which the tree T is grown
Output:

A new configuration g,.,, toward g, or NIL in case of failure

1: Qpear < closest neighbor of g in T
2 Gew <— PrOZIESS ¢near DY step_size along the straight line in O between g, and
Yrand
if ¢uew 18 collision-free then
V<Vu {qnew}
E < EU {(qneara Qnew)}
return gney
end if
return NIL

® N> W kW

One possible way is to choose step_size dynamically based on the distance between
Gnear a0d Grang as given by the distance function used. It makes sense to choose a large
value for step.size if the two configurations are far from colliding, and small
otherwise. RRT is sensitive to the distance function used, since it is this function that
determines step-size and guides the sampling. A discussion of the metrics and their
effects on RRTs is found in [103]. It is also interesting to consider a greedier alternative
that tries t0 MOVe Gpeyw as close to gryg as possible. This method, algorithm 12, calls

AN R S ey

7.2 Single-Query Sampling-Based Planners 235

T q

step_size

! dnew
;

;

!

/

i

[qrand

Figure 7.14 Adding a new configuration to an RRT. Configuration g,,g is selected randomly
from a uniform distribution in Qg... Configuration g is the closest configuration in T t0 Gyana
(this configuration is denoted as gnesr in the algorithm). Configuration gy is obtained by
moving g by step_size toward grng. Only gnew and the edge (g, gnew) are added to the RRT.

Algorithm 12 Connect RRT Algorithm
Input:

T =(V, E): an RRT

g: a configuration toward which the tree 7' is grown
QOutput:

connected if g is connected to T'; failure otherwise

repeat
Gnew <— €xtend RRT (7, q)

. until (Gpew= q OF Gpey= NIL)
. if grew = g then

return connected
else
return failure

. end if

algorithm 11 until gy reaches ¢p,,q Oor no progress is possible. If algorithm 12 is
called in algorithm 10, line 5, an RRT with greater than n nodes may be created.

It is important to note the tradeoff that exists between the exploration of @ and
the number of samples added to the tree, especially for high-dimensional problems.
If step.size is small, then the exploration steps are short and the nodes of the tree
are close together. A successful call to algorithm 12 results in many nodes being
added to the tree. As the number of nodes becomes large, memory consumption is
increased and finding the nearest neighbor becomes expensive, which in turn reduces

236

7 Sampling-Based Algorithms

the performance of the planner. In such cases, it may be better to add only the last
sample of the Extend RRT iteration to the tree and no intermediate samples.

Guiding the Sampling

Selecting a node uniformly at random in step 4 of algorithm 10 is a basic mechanism
of RRT. It is also of interest to consider other sampling functions that are biased toward
the connected components of Q that contain g Or ggear. Let’s consider the case of
Ggoal- At an extreme, a very greedy sampling function can be defined that sets gpq to
Ggoal (if the tree being built is rooted at i) Or to ginit (if the tree being built is rooted
at ggoa). The problem with this approach is that it introduces too much bias, and
eventually RRT ends up behaving like a randomized potential field planner that gets
stuck in local minima. It seems, therefore, that a suitable choice is a sampling function
that alternates, according to some probability distribution, between uniform samples
and samples biased toward regions that contain the initial or the goal configuration.
Experimental evidence [249,271] has shown that setting gru,q t0 ggou With probability
p, or randomly generating g,,g With probability 1 — p from a uniform distribution,
works well. Even for small values of p, such as 0.05, the tree rooted at gy, converges
much faster to gy than when just uniform sampling is wsed. This simple function
can be further improved by sampling in a region around ggoq instead of setting grana
t0 ggou- The region around gg.q is defined by the vertices of the RRT closest tO ggeq at
each iteration of the construction step.

Merging of Trees

In the merging step, RRT tries to connect the two trees, Tiyi; and Tyqq, rooted at ginic and
qgoal> Yespectively. This is achieved by growing the trees toward each other. Initially,
a random configuration, ¢and, 1s generated. RRT extends one tree toward grang and as
a result obtains a new configuration, gy. Then the planner attempts to extend the
closest node to g,y in the other tree toward ¢y, . If successful, the planner terminates,
otherwise the two trees are swapped and the process is repeated a certain number of
times. Figure 7.15 illustrates a simple case of merging two RRTs in a two-dimensional
Euclidean space.

The merge algorithm, as presented in algorithm 13, uses algorithm 11. Recall that
algorithm 11 produces a new configuration that is only step_size away from the
nearest node in the existing RRT. By replacing algorithm 11 in lines (3) and (5) with
algorithm 12, new configurations are produced farther away. This greedier approach
has been reported to work well [249,271]. It is also reasonable to replace only one
of the algorithm 11 calls, and thus obtain a balance between the two approaches. The

7.2 Single-Query Sampling-Based Planners 237

oal

Grand

Figure 7.15 Merging two RRTs. Configuration gpg 15 generated randomly from a uniform
distribution in Qgee. Configuration ¢, was extended to grang. ¢ is the closest configuration to
Grand 10 Tgoa. It was possible to extend gz t0 grang- As aresult, Tiy and Tyo, were merged.

Algorithm 13 Merge RRT Algorithm
Input:
Ty: first RRT
T,: second RRT
£: number of attempts allowed to merge 77 and 7,
Output:
merged if the two RRTs are connected to each other; failure otherwise
:fori=1tofdo
Grand < a randomly chosen free configuration
Guew,1 < extend RRT (71, Grana)
if gpow,1 7 NIL then
Qnew,2 < extend RRT (7>, QHew,l)
if Irnew,1 = Gnew,2 then
return merged
end if
SwaApr(Ty, T»)
end if
: end for
: return failure

choice of whether a greedier or more balanced approach is used for the exploration
depends on the particular problem being solved. Discussions can be found in [249,
271]. Once the two RRTs are merged together, a path from gy 0 ggoa is obtained in
the same way as in the case of ESTs,

238

7.2.3

7.3

7 Sampling-Based Algorithms

The implementation of RRT is easier than that of EST. Unlike EST, RRT does not
compute the number of configurations lying inside a predefined neighborhood of a
node and it does not maintain a probability distribution for its configurations.

Connection Strategies and the SBL Planner

Lazy evaluation, which was introduced as a connection strategy in section 7.1.4,
can also be used in the context of tree-building sampling methods. A combination
of lazy evaluation and ESTs has been presented in the context of the Single-query,
Bi-directional, Lazy collision-checking (SBL) planner [367].

SBL constructs two EST trees rooted at gini; and ggoq. SBL creates new samples
according to the EST criteria but does not immediately test connections between
samples for collisions. A connection between two configurations is checked exactly
once and this is done only when the connection is part of the path joining the two trees
together (if such a path is found). This results in substantial time-savings as reported
in [367].

It is also worth noting that SBL uses a clever way to find which configurations
to expand and hence guide the sampling (see section 7.2.1). In the original EST, a
configuration is chosen for expansion according to the density of sampling in its
neighboorhood. Finding neighbors is in general an expensive operation as the dimen-
sion increases. SBL imposes a coarse grid on Q. It then picks randomly a non-empty
cell in the grid and a sample from that cell. The probability to pick a certain sample
is greater if this sample lies in a cell with few nodes. This simple technique allows
a fast implementation of SBL and is applicable to all EST-based planners. Details on
how this technique helps in the connection of trees grown from the initial and goal
configuratiors are given in [367].

EST and RRT employ excellent sampling and connection schemes that can be further
exploited to obtain even more powerful planners, as discussed in the next section.

Integration of Planners: Sampling-Based Roadmap of Trees

This section shows how to effectively combine a sampling-based method primar-
ily designed for multiple-query planning (PRM) with sampling-based tree methods
primarily designed for single-query planning (EST, RRT, and others). The Sampling-
Based Roadmap of Trees (SRT) planner [14, 43,353] takes advantage of the local
sampling schemes of tree planners to populate a PRM-like roadmap. SRT replaces the
local planner of PRM with a single-query sampling-based tree planner enabling it to
solve problems that other planners cannot.

7.3 Integration of Planners: Sampling-Based Roadmap of Trees 239

A question arises as to whether SRT is a multiple-query or single-query planner.
SRT can be seen as a multiple-query planner, since once the roadmap is constructed,
SRT can use the roadmap to answer multiple queries. SRT can also be seen as a single-
query planner because for certain very difficult problems, the cost of constructing
a roadmap and solving a query by SRT is less than that of any single-query planner
solving the same query. This is why in section 7.1 it was pointed out that the distinction
of planners to multiple-query and single-query planners is very useful for describing
the planners, but always needs to be placed in perspective given the planning problem
at hand.

As in the PRM formulation, SRT constructs a roadmap aiming at capturing the
connectivity of Qpg... The nodes of the roadmap are not single configurations but
trees, as illustrated in figure 7.16. Connections between trees are computed by a bi-
directional tree algorithm such as EST or RRT. Recall that a roadmap is an undirected
graph G = (V, E) over a finite set of configurations V C Qpgee, and each edge
(q', q") € E represents a local path from ¢’ to ¢”. SRT constructs a roadmap of trees.
The undirected graph Gr = (Vr, E7) is an induced subgraph of G which is defined
by partitioning G into a set of subgraphs T3, .. ., T,, which are trees, and contracting
them into the vertices of Gr. In other words, Vr = {11, ..., T,} and (T}, T;) € E7 if

Figure 7.16 An example of a roadmap for a point robot in a two-dimensional workspace.
The dark gray areas are obstacles. Each node of the roadmap is a tree rooted at the black
squares. The thin-solid lines indicate connections between configurations of the same tree. The
thick-dashed lines indicate connections between configurations of two different trees. The light
gray areas delineate the separate trees.

240

7 Sampling-Based Algorithms

there exist configurations g; € T; and g; € T, such that ¢; and g; have been connected
by a local path.

Adding Trees to the Roadmap

In SRT, the trees of the roadmap G are computed by sampling their roots uniformly
at random in Qpgee, and then growing the trees using a sampling-based tree planner,
such as algorithms 8 and 10. Note that in principle any of the node-sampling strategies
of PRM described in section 7.1.3 can be applied.

Adding Edges to the Roadmap

The roadmap construction is not yet complete since no edges have been computed.
An edge between two trees indicates that they are merged into one. For each tree
T;, a set Ny, consisting of closest and random tree neighbors is computed and a
connection is attempted between 7; and each tree 7; in N7,. As in PRM, SRT may
choose to avoid the computation of candidate edges that cannot decrease the number
of connected components in Gr. In fact, any of the PRM connection strategies of
section 7.1.4 can be applied here. In order to determine the closest neighbors, each
tree 7; defines a representative configuration g7, which is computed as an aggregate
of the configurations in T;. The distance between two trees T; and T; is defined as
dist(qr,, q7,)- It has been observed experimentally in [14,43] that the consideration of
random neighbors offsets some of the problems introduced by the distance function
used.

Computation of candidate edges is typically carried out by a sampling-based tree
planner. First, for each candidate edge (T}, 7;), a number of close pairs of configura-
tions of 7; and 7; are quickly checked with a fast deterministic local planner. If a Jocal
path is found, no further computation takes place. Otherwise, the sampling-based tree
planner used to add trees to the roadmap should be employed. During tree connection,
additional configurations are typically added to the trees T; and T;. If the connection
is successful, the edge (7;, T;) is added to Er and the graph components to which
T; and T; belonged are merged into one. Note that the trees 7; and 7} are connected
when some configuration g; € T; is connected to some configuration g; € 7;.

The pseudocode is given in algorithm 14. In addition to RRT and EST, other
sampling-based tree planners, such as [251,350], can be used with SRT. It is also
possible to incorporate lazy evaluation into SRT by using a planner similar to SBL for
tree expansion and edge computations.

7.3 Integration of Planners: Sampling-Based Roadmap of Trees 241

Algorithm 14 Connect SRT Algorithm
Input:
Vr: a set of trees
k : number of closest neighbors to examine for each tree
r: number of random neighbors to examine for each tree
Output:
A roadmap Gy = (Vr, Er) of trees
1. Er <0
2: forall T; € Vr do
3 Ny, < k nearest and r random neighbors of 7; in Vr
4. forall T; € Ny, do
5: if T; and T; are not in the same connected component of G then
6 .
7
8
9

merged < FALSE :
S; <— a set of randomly chosen configurations from 7;
for all g; € S; and merged = FALSE do
: q; < closest configuration in 7 to g;
10: if A(q,‘, qj) then

11 Er < Er U{(T;, T)}

12: merged <— TRUE

13: end if

14: end for

15: if merged = FALSE and Merge Trees (T;, T;) then
16: Er < Er U{(T;, T}

17: end if

18: end if

19: end for

20: end for

Answering Queries

As in PRM, the construction of the roadmap enables SRT to answer multiple queries
efficiently if needed. Given giq;; and ggoa, the trees Tipy and Tyoq rooted at ging and goa,
respectively, are grown for a small number of iterations and added to the roadmap.
Neighbors of Tipy and Tyoqr are computed as a union of the k closest and » random trees,
as described previously. The tree-connection algorithm alternates between attempts
to connect Tin; and Tyoq to each of their respective neighbor trees. A path is found if
at any point Ty and Tyoq lie in the same connected component of the roadmap. In
order to determine the sequence of configurations that define a path from gipi t0 gy,

242

7.4

7 Sampling-Based Algorithms

it is necessary to find the sequence of trees that define a path from Tiyy to Tgoa and
then concatenate the local paths between any two consecutive trees. Path smoothing
can be applied to the resulting path to improve the quality of the output.

Parameters of SRT

A nice feature of SRT is that it can behave exactly as PRM, RRT, or EST. That is, if
the number of configurations in a tree is one, the number of close pairs is one and
the number of iterations to run the bi-directional tree planner is zero (denoted by
Merge Trees in line (15) of algorithm 14), then SRT behaves as PRM. If the number of
trees in the roadmap is zero and the number of close pairs is zero, then SRT behaves as
RRT or EST depending on the type of tree. SRT provides a framework where successful
sampling schemes can be efficiently combined.

Parallel SRT

SRT is significantly more decoupled than tree planners such as ESTs and RRTs. Unlike
ESTs and RRTs, where the generation of one configuration depends on all previ-
ously generated configurations, the trees of SRT can be generated independently of
one another. This decoupling allows for an efficient parallelization of SRT [14]. By
increasing the power of the local planner and by using trees as nodes of the roadmap,
SRT distributes its computation evenly among processors, requires little commu-
nication, and can be used to solve very high-dimensional problems and problems
that exceed the resources available to the sequential implementation [14]. Adding
trees to the roadmap can be parallelized efficiently, since there are no dependencies
between the different trees. Adding edges to the roadmap is harder to parallelize
efficiently. Since trees can change after an edge computation and since computing
an edge requires direct knowledge of both trees, the edge computations cannot be
efficiently parallelized without some effort [14]. Furthermore, if any computation
pruning according to the sparse roadmaps heuristic is done (see section 7.1.4), this
will entail control flow dependencies throughout the computation of the edges.

Analysis of PRM

The planners discussed in this chapter sample points in Qp. and connect them using
a local planner. As opposed to exact motion-planning algorithms, such as [90, 306,
361,373,375], it is possible that PRM and other sampling-based motion planners can
report falsely that no path exists. It would seem that the correctness of the motion

74.1

7.4 Analysis of PRM 243

planner has been sacrificed in favor of good experimental performance. This, however,
is not exactly the case. Rather than being a purely heuristic technique, a weaker
completeness property, called probabilistic completeness, can be proved to hold for
PRM as was discussed in the introductory section of this chapter.

This section deals with probabilistic completeness proofs and analyses of the basic
PRM planner. In the basic PRM planner, samples are chosen from a uniform random
distribution. Although the presented results are for an idealized version of PRY, it
is strongly conjectured that probabilistic completeness results can be extended to
conditional random sampling and to deterministic sampling, in the latter case, in the
form of resolution completeness results.

Suppose that a, b € Q.. can be connected by a path in Qge.. PRM is considered to
be probabilistically complete, if for any given (a, b)

lim Pr[(a, b) FAILURE] = 0,

n=>00

where Pr((a, b) FAILURE] denotes the probability that PRM fails to answer the query
(a, b) after a roadmap with n samples has been constructed. The number of samples
gives a measure of the work that needs to be done and hence it can be used as a
measure of the complexity of the algorithm.

The results presented in this section apply to the basic PRM algorithm. Section 7.4.1
analyzes the operation of PRM in a Euclidean space. Using this analysis, it is possible
to gain an estimate on how much work (as measured by the number of generated
samples) is needed to produce paths with certain properties. Section 7.4.2 shows how
certain goodness properties of the underlying space affect the performance of PRM. Itis
this analysis that sheds light on why PRM works well with extremely simple sampling
strategies such as uniform sampling. Experimental observations indicate that many of
the path-planning problems that arise in physical settings have goodness properties,
such as the ones described in section 7.4.2, that may not require elaborate sampling
schemes. Both analyses prove probabilistic completeness for PRM. Section 7.4.3 shows
an equivalence between the probabilistic completeness of PRM and a much simpler
planner. '

PRM Operating in R?

This section provides an analysis [222,223] of PRM operating in Euclidean R¢. Assum-
ing that a path between two different configurations a and b exists, it is shown that
the probability of PRM failing to connect a and b depends on (1) the length of the
known path, (2) the distance of the path from the obstacles, and (3) the number of
configurations in the roadmap. Connecting a and b by a long path requires a larger
number of intermediate configurations to be present in the roadmap. Paths that are

244

7 Sampling-Based Algorithms

closer to obstacles are harder to obtain because of potential collisions. Similarly, paths
that are inside narrow passages are harder to obtain because the probability of placing
random configurations inside narrow passages is small. The probabilistic complete-
ness of PRM is proved by tiling the known path with a set of carefully chosen balls
and showing that generating a point in each ball ensures that a path between a and b
will be found.

Let Q. be an open subset of [0, 1]¢ and let dist be the Euclidean metric on R?.
The local planner of PRM connects points a, b € Qg when the straight-line ab lies in
Ofiee- A path y in Qg from a to b consists of a continuous map y : [0, 1] = e,
where y(0) = a and y(1) = b. The clearance of a path, denoted clr(y), is the
farthest distance away from the path at which a given point can be guaranteed to be
in Qfee. If a path y lies in Qgee, then clr(y) > 0.

The measure u denotes the volume of a region of space, e.g., ([0, 1]¢) = 1. For
any measurable subset A C R?, u(A) is its volume. For example, an open ball of
radius € centered at x is denoted by B.(x) and its volume is given by w(B.(x)). The
uniform distribution is used by PRM to sample points. If A C Qg is a measurable
subset and x is a random point chosen from Qg by the point-sampling function of
PRM, then

u(A)
M(erec)
THEOREM 7.4.1 Let a,b € Qsee. such that there exists a path vy between a and b

lying in Qgee. Then the probability that PRM correctly answers the query (a, b) after
generating n configurations is given by

Prix € A) =

o 2L
Pr{(a, b) SUCCESS] = 1 — Pr[(a, b) FAILURE] > 1 — {—1 e~oP'n,
P

where L is the length of the path y, p = c1r(y), B(-) is the unit ball in R? and

MBI
2dM(eree).

¥
Proof letp = clr(y) and note that p > 0. Let m = [%L] and observe that there

are m points on the path a = x, ..., x,, = b such that dist(x;, x;.1) < p/2. Let
¥i € Byp(x;) and yipr € Bpjo(xi41). Then the line segment y;y; 1 must lie inside
Ofree since both endpoints lie in the ball B,(x;). An illustration of this basic fact is
given in figure 7.17. Let V C Q.. be a set of n configurations generated uniformly
at random by PRM. If there is a subset of configurations {yi, ..., ¥} C V such that
¥i € B,ypa(x;), then a path from a to b will be contained in the roadmap. Let 11, . .., I,
be a set of indicator variables such that each I; witnesses the event that thereisay € V

7.4 Analysis of PRM 245

Figure 7.17 Points y; and y;, are inside the p/2 balls and straight-line 7;¥; 1 is in Qfree.

and y € B,,»(x;). It follows that PRM succeeds in answering the query (a, b) if I; =1
forall 1 <i < m. Therefore,

Prl[(a, b) FAILURE] < Pr <\/ I = 0) < Pr[l; = 0],
i=1 i=1
where the last inequality follows from the union bound [119].

The events I; = 0 are independent since the samples are independent. The prob-
ability of a given I; = 0 is computed by observing that the probability of a single
randomly generated point falling in B,2(x;) is it(By/2(x:))/ it Qteee). It follows that
the probability that none of the » uniform, independent samples falls in B,/»(x;)
satisfies

Prl, = 0] = (1 _ M) .
/‘L(eree)
Since the sampling is uniform and independent, then
2L B (- n
Pri(a, b) FAILURE] < [_1 (1 - M@) _
p H (eree)

However

B _ (B B
PL(eree) M(eree) ’

246

7.4.2

7 Sampling-Based Algorithms

for o defined as in the statement of this theorem. The bound is obtained by using the
relation (1 — Y <e P for0 < B < I:

oL
Prl(a, b) FAILURE] < [_] p—]
p .

As shown from the proof above, a better estimate for Pr[(a, b) FAILURE] is avail-
able than the exponential bound given in theorem 7.4.1. The exponential bound is a
simplification that allows the direct calculation of n when the user wishes to spec-
ify an acceptable value for Pr{(a, b) FAILURE]. The proof of theorem 7.4.1 can be
extended to take into account that clearance can vary along the path [223]. Theo-
rem 7.4.1 implies that PRM is probabilistically complete. Moreover, the probability of
failure converges exponentially quickly to 0.

(e, a, B)-Expansiveness

This section argues how PRM roadmaps capture the connectivity of Og.. based on
the analysis of [192, 196, 197,228,229]. A principal intuition behind PRM has been
that in spaces that are not “pathologically” difficult, that is in spaces where reason-
able assumptions about connectivity hold, the planner will do well even with simple
sampling schemes such as random sampling. ‘

Observe that, in the general case, Qg.. can be broken into a union of disjoint
connected components {Qgeets - -+, Qfieeisr - - .1 Let G = (V, E) be the roadmap
constructed by PRM with uniform sampling. For each Qgee;, let V; = V N Qp; and
let G; be the subgraph of G induced by V;. In the rest of this section, it is shown how
to determine the number of configurations that should be generated to ensure that,
with probability exceeding a given constant, each G; is connected.

Given a subset S of Qs.., the reachable set from S is the set of configurations in
Qfree that are visible from any configuration in S. Figures 7.18(a) and (b) show an
example.

DEFINITION 7.4.1 Let S C Qgee. The reachable set of S is defined as
reach(S) = {x € Qpee | Iy € S such that Xy C Qfee}-

The shorthand reach(x) is used instead of reach({x}) when x € Qfree.

A space Qe 18 €-good if the volume of Qp.. that each point in Qg can reach is
at least an ¢ fraction of the total free volume of Qfree.

7.4 Analysis of PRM 247

@ (b ©

Figure 7.18 The areas in black indicate the obstacles. In (a) and (b), the areas in gray indicate
the reachability sets of the two points represented by black circles. In (c), the set A has a small
lookout (the gray area), because only a small subset of points in A near the narrow passage can
see a large fraction of points in B. (From Hsu [192].)

DEFINITION 7.4.2 Let € be a constant in (0, 1]. A space Qg is €-good if for all
X € eree’

ulreach(x)) > € Osree)-

The B-lookout of a subset S of a connected component of Qp; is the subset of
S for which each configuration in that subset can reach more than a 8 fraction of
Otree; \ S. An example is given in figure 7.18(c).

DEFINITION 7.4.3 Let B be a constant in (0, 1] and let S be a subset of a connected
component Qriee; Of Qtree- The B-lookout set of S is defined as

lookoutg(S) = {x € S| u(reach(x) \ 8) > Bu(Qtree; \ S)}-
The following definition captures how reachability spreads across the space.

DEFINITION 7.4.4 Let €, o and B be constants in (0,1). A space is (e, a, B)-
expansive if

1. itis e-good, and
2. for any connected subset of S C Qfpee, p(Llookouts(S)) > au(S).

The first condition of definition 7.4.4 ensures that a certain fraction of Qg is
visible from any configuration in Qg... The second condition ensures that each subset
S € Oree; has a large lookout set. It is reasonable to think of S as the union of the

248

7 Sampling-Based Algorithms

w |44 |44

A
Y
A
Y
A
\

Figure 7.19 An example of an (€, o, B)-expansive Qpee With €, &, 8 & w/W. The points
with the smallest ¢ are located in the narrow passage between square A and square B. Each
such point sees only a subset of Q.. of volume approximately 3w W. Hence € ~ w/W. A
point near the top right corner of square A sees the entire square; but only a subset of A, of
approximate volume w W, contains points that each see a set of volume 2w W;hence o ~ w/W
and 8 ~w/W. (FromHsu[192].)

reachability sets of a set V of points. Large values of « and g indicate that it is easy
to choose random points from § such that adding them to V results in significant
expansion of S. This is desirable since it allows for a quick exploration of the entire
space. Figure 7.19 gives an example of an expansive space and indicates the values
of ¢, and 8.

We now introduce the concept of a linking sequence, which will be used in the
development that follows.

DEFINITION 7.4.5 A linking sequence of length £ for a configuration x € Qg is a
set of configurations x; = X, Xz, ..., Xy With an associated sequence of reachable
sets X| = reach(x)), X, ..., X¢ C Qfree, Whereforall 1 <i < ¥,

X; € lookoutg(X;~1) and X;= X;_;Ureach(x;).

The proof of the main result relies on two technical lemmas, whose proofs are
given in [192]. Lemma 7.4.6 gives a bound on the probability of sampling a linking
sequence for a given configuration x in terms of «, €, and ¢, the length of the linking
sequence.

LEMMA 7.4.6 LetV be a set of n configurations chosen independently and uniformly
at random from Qgee. Let s = 1/ae. Given any configuration x € V, there exists a
linking sequence in V of length t for x with probability at least 1 — se=(""1=1/s,

Lemma 7.4.7 gives a lower bound on the volume of V, for an arbitrary linking
sequence of length ¢.

7.4 Analysis of PRM 249

LEMMA 7.4.7 Letxy = X, X9, ..., X; be a length t linking sequence for x € Qseeis
where Qiree; IS a connected component of Qgree. Let X1, X, ..., X, be the associated
reachable sets. Ift > B~ In(4), then

3 reei
w(X,) = L%).

The main result of this section follows. Given a number 4§, the theorem finds » such
that if 2z 42 configurations are sampled, then each subgraph G; is a connected graph
with probability at least 1 — §. This indicates that the connectivity of the roadmap
G conforms to the connectivity of Qg... It means that, with high probability, no two
connected components of G lie in the same connected component of Qgee.

THEOREM 7.4.2 Let$ be a constantin (0, 1]. Suppose aset V of 2n+-2 configurations

for

_ 81n(;§3) 3
”‘[T*E ’

is chosen independently and uniformly at random from Qgee.. Then, with probability
at least 1 — 8, each subgraph G, is a connected graph.

Proof Let x and y be any two configurations in the same connected component
Orree: - Divide the remaining configurations into two sets V’ and V” of n configurations
each. By lemma 7.4.6, there is alinking sequence of length 7 for x in V’ with probability
at least 1 — se~*/5_ The same holds true for y and V'. Let X,(x) and X,(y) be the
reachability sets determined by the linking sequences of length ¢ of x and y. By
choosing ¢ > 1.58, lemma 7.4.7 is applied to ensure that u(X,(x)) and pu(X(y))
are larger than 3u(Qfree;) /4. It follows that (X, (x) N X,(¥)) = w(Qtieei) /2. It is
known that p(Qpee;) > €, because Ope.; is an €-good space; the visibility region
of any point in Qg.e; must have volume at least €. Since the configurations in V”
are sampled independently and uniformly at random, it follows that with probability
at least 1 — (1 — €/2)" > 1 — e "/2, there is a configuration in V” that lies in the
intersection of the reachability sets. This means that there is a path from x to y in G;.

Let B be the event that x and y fail to connect in G;. By applying a union bound
and by the linking sequence construction, it follows that

Pr[B] < 2se”®0/5 4 g7/,
By choosing n > 2¢ and recalling that s = 1/xe,

PT[B] < 2se—n/2s +e-ne/2 < 2se——n/2s _I_e—n/2oze < 3se—n/2s‘

250

74.3

7 Sampling-Based Algorithms

A graph G; will fail to be connected if some pair x, y € V; fails to be connected.
There are at most (;) such pairs and the probability of this occurring is at most

(g)Pr[B] < <’;> 35¢% < 2nse P < 2 ~rHIMIIB < g pn/As

where the last inequality follows from the observation that n/2 > 4slnn forn >
8s In(8s). By requiring that n > 8s In(8s/4), it follows that

2
2se—n/4s = 2se—2ln(83/5) < 2s i < 8
- - 8 /)~
>

It is sufficient to choose n 8sIn(8s/8) + 2t for this argument to succeed. By
substituting s = 1/we and ¢ = 1.58 into this expression, the stated result is
obtained. u

Theorem 7.4.2 implies probabilistic completeness, although some additional argu-
mentation is needed. The main limitation of the above analysis is the reliance on
the a, B, and € constants being nonzero. This will be true for any polyhedral space.
Since any configuration space can be well approximated with a polyhedral space
without changing its connectivity, theorem 7.4.2 holds. A detailed analysis can be
found in [37,192,196, 197].

Abstract Path Tiling

In this section, theorem 7.4.1 is generalized by reducing the set of assumptions to a
bare minimum. The new assumptions are sufficient for defining the planner’s sampling
scheme-and the notion of reachability. In fact, the structural requirements for the con-
figuration space are very simple and are captured by the mathematical abstraction of a
probability space: essentially a space over which probability can be defined. In the new
framework, the balls used to tile a path in theorem 7.4.1 can be replaced with arbitrary
sets of strictly positive measure. These sets are not necessarily connected or open. The
analysis is introduced in order to consider PRM operating on motion-planning problems
with difficult configuration spaces, and with complex local planners such as those aris-
ing from motion planning with dynamics, deformable objects, objects with contact,
and others [252]. The framework presented in this section enables a rigorous treat-
ment of asymmetric reachability, nonmanifold configuration spaces, and sampling
from arbitrary distributions. Hence, it reveals the applicability of the PRM scheme to
problems beyond basic path-planning. A detailed analysis can be found in [252].
As before, the distribution for configuration generation is encoded with the proba-
bility measure (. S0 if A C Ofee, then p(A) is the probability that a random sample

e AL S

7.4 Analysis of PRM 251

Algorithm 15 Random Incremental Algorithm
Xp < X
£ «0
loop
Check if xRy, if so return x, . . ., X, ¥ as the computed path
Generate xy41 at random from distribution u
Check if x;Rx,, 1, if not return no path
L «—t+1
end loop

from Op.. lies in A. The local path planner is further generalized away from a straight-
line planner and is instead replaced with an arbitrary binary relation, R. Informally,
xRy means y can be reached using the local planner from x. Note that xRy need
not imply yRx. More precisely, the set R C Opee X Qpree is the set of all query
configurations that can be connected by the local planner. For example, if Qge. C
[0, 1]¢ and the local planner is a straight-line planner, then

(.X, }’) €R @’WC eree-

It is required that R is measurable in Qgee X Qpee. Membership in R is written
interchangeably as (x, y) € R or xRy.

This section develops two distinct ideas from these definitions. A simple motion
planner based on random incremental construction of a path is stated in algorithm 15.
First, it will be shown that PRM is probabilistically complete if and only if algorithm 15
can answer correctly on every query with nonzero probability. Second, it is proved
that probabilistic completeness implies a bound on Pr[(x, y) FAILURE] similar to
the one stated in theorem 7.4.1.

THEOREM 7.4.3 Algorithm 15 succeeds with nonzero probability on every query if
and only if PRM is probabilistically complete. Furthermore, if PRM is probabilistically
complete, then there exist constants £ > 0 and p > O such that

Pr[(x, y) FAILURE] < £e™ 7",
where n is the number of configurations in the roadmap.
Proof First, the equivalence between PRM and algorithm 15 is proven. Suppose

that algorithm 15 succeeds on query (x, y) with probability P > 0. The probability
of generating each intermediate point along the path from x to y is the same for

252

7 Sampling-Based Algorithms

algorithm 15 and PRM, since they both sample randomly from the same distribution
. Hence, PRM succeeds on query (x, y) with probability P > 0.

For the converse, suppose that after constructing the roadmap, PRM succeeds on
query (x, y) with probability P > 0. Choose # to be the minimum number of config-
urations in the roadmap for the previous statement to be true. Since n is the smallest
such number, then every configuration of the roadmap appears exactly once as an
intermediate point of the path connecting x to y. Note that it does not matter in what
order the configurations are generated: the roadmap is permutation invariant. Since
the samples are independent, it suffices to consider only the solutions where the path
is generated in order and conclude that the probability of this occurring is then % > 0.
Algorithm 15, after running for n iterations, would have probability at least % >0
of succeeding.

This concludes the proof of the probabilistic completeness equivalence between
algorithm 15 and PRM. It remains to show that the probability of failure for PRM
decreases exponentially with the number of samples generated.

Define R? to be the £¢th iteration of R, i.e.,

(X1,...,xp) € R¢ < x1Rxy-- - xs_1 Rxy.

Suppose PRM is probabilistically complete. For any query (x, y), there exists an £
such that a sequence of £ guesses is a path from x to y with probability P > 0. Let
S C R* be the set of guesses which are length £ paths from x to y. The probability
of choosing such a sequence of £ points is ©?(S) = P > 0 (it can be shown that S is
measurable in eree). The set S is decomposed into a union of disjoint rectangles, i.e.,

o0

S=|Jaix - x 4.
i=1

Choose i such that

(4 a8) = T m(a)

j=1

is maximized. Observe that it must be larger than zero. Let x4, ..., x, be any set of
points such that x; € A‘J It follows that x Rx; R - - - Rx, Ry by construction of §. Let

p = min pu(43).

The probability that PRM fails to find a path between x and y after generating n
configurations is therefore bounded by the probability that no such xi, ..., x; is
contained in the configuration set. Let I; be an indicator variable that witnesses the

7.5

7.5.1

7.5 Beyond Basic Path Planning 253

event of the configuration set containing a point from A‘j

£
Pr{(x, y) FAILURE] < Pr [\/ I = 0}

j=1

£
<> Pril; =0
j=1

‘

= (1-n(4)"
j=1

< L1 — p)t < Le™ P,

Finally, note that £ > 0 and p > 0. |

It is interesting to note that the symmetry and reflexivity properties of the local

‘planner were never used in the proof. In particular, the proof will still hold for an

asymmetric and irreflexive local planner. This is a natural way to incorporate the
notion of time into PRM planning. Also, the sampling distribution is not necessarily
uniform. The obtained bound is of the same form as the previous bounds and shows that
probabilistic completeness ensures an inverse exponential bound on failure probability
in terms of the number of configurations in the roadmap.

Beyond Basic Path Planning

Sampling-based planners are becoming powerful and this allows the solution of prob-
lems beyond the generalized movers’ problem. Some instances are considered here.

Control-Based Planning

Control-based planning was initially introduced in the context of planners that used
discretization [41]. The notion, however, extends daturally to sampling-based planners
and the principal ideas are introduced here. This section, however, should be read in
conjunction with the material introduced in chapters 11 and 12.

Consider a nonholonomic robot such as a carlike robot, or any type of system
for which we are given a set of controls I/ and a well-behaved control function f,
f 1 @ xU — Q thatdescribes a method for propagating a robot state into the future.
Many of the sampling-based planners that have been described in this chapter can be
used with such systems.

254

7.5.2

7 Sampling-Based Algorithms

In particular, when f is given, a simple way of generating new samples in the
state space may be available, e.g., a new state can be obtained by sampling according
to some distribution of values for the controls, and applying these to the system
state via f. Several applications of random controls can yield a configuration far
away from the original sample. When such a forward propagation of the system is
relatively inexpensive, tree-based planners such as ESTs and RRTs can be directly
applied. The sampling method of EST is purely a forward propagation method as it
is explained in section 7.2.1. RRTs use steering to produce new configurations but do
not require the system to achieve the configurations toward which it is steered (see
section 7.2.2). In most cases when the above planners are applied to control-based
planning a single tree is generated from the initial configuration. Planning finishes
when the goal configuration is reached or approximated with a predefined accuracy.

EST and RRT planners have been used with success for several problems with robots
that exhibit various kinematic and dynamic constraints [41, 192, 195, 196, 235, 249,
270-272,350] as well as stability constraints [247,248]. Examples of such problems
are illustrated in figure 7.20. Time can also be accommodated as part of the state
space of the robot. This allows the modeling of a dynamic workspace (e.g., [195]).

In some cases, it may be possible to solve for the set of controls that are required to
travel between two given states either exactly or approximately. Then the application
of PRM is possible. PRM has been applied successfully to path-planning for nonholo-
nomic systems, such as carlike robots and tractor-trailer systems [379,404,405].

Multiple Robots

The multiple movers problem deals with path planning for many robots. A collision-
free path from an initial configuration of the robots to a goal configuration of the
robots implies that at every step there is no collision between a robot and an obstacle
or between a robot and another robot. A solution to this problem, in addition to finding
paths for the individual robots (which only guarantee that there are no collisions with
the obstacles), must be able to coordinate these paths so that no two robots are in
collision. This second requirement makes the problem significantly harder than in
the case of a single robot. There are two classic approaches to the multiple robots
problem: centralized and decoupled planning.

Centralized Planning

Centralized planning considers the different robots as if they were forming a sin-
gle multibody robot and represents Q as the Cartesian product of the configuration
spaces of all the robots. The dimensionality of Q is equal to the total number of

7.5 Beyond Basic Path Planning 255

(b) ©

Figure7.20 Control-based planning examples. (a) Car driving. (b) Humanoid robot. (c) Space
shuttle docking at the space station—the yellow cones represent the plume of the shuttle that
should not be directed toward the space station. ((a) From LaValle and Kuffner [272]; (b) from
Kuffner [248]; (c) from Phillips, Kavraki, and Bedrossian [350].)

degrees of freedom of all the robots. Coordination of the robots is trivially achieved:
a collision-free configuration in Q@ describes the configuration of each individual robot
and ensures that no robot is in collision with some obstacle or some other robot. The
difficulty of centralized planning arises from high the dimensionality of Q. As plan-
ners become more efficient in dealing with high-dimensional configuration spaces Q,
harder problems with multiple robots can be solved. Figure 7.21 shows a workspace
where six robots cooperate on a welding task [367].

256

7 Sampling-Based Algorithms

Figure 7.21 Multiple robots manipulating a car. (From Sdnchez and Latombe [367].)

Decoupled Planning

Decoupled planning works in two stages. Initially, collision-free paths are computed
for each robot individually, not taking into account the other robots but simply con-
sidering the obstacles of the workspace. In the second stage, coordination is achieved
by computing the relative velocities of the robots along their individual paths that will
avoid collision among them [219]. Decoupled planning does not increase the dimen-
sionality of the configuration space. It is incomplete, however, even when the algo-
rithms used in both of its stages are complete: it may be impossible to coordinate
some of the paths generated during the first stage so that two different robots do not
collide. Alternatively, in what is known as prioritized planning, robots are processed
in some preassigned order and a robot is treated as a moving obstacle as soon as its
path has been computed.

Planners for the Multiple Robots Problem

In principle, all sampling-based planners of this chapter can be adapted for multiple
robots. Some key changes may be needed to retain good performance. For example,
ESTs and RRTs can be used directly, as presented in section 7.2 but their perfor-
mance can be improved with small modifications. A proposed scheme for connecting
an existing configuration in the tree to a random configuration g.,q has been pro-
posed [14]. Each robot is moved incrementally toward g.nq. The path is checked for
collisions by adding one robot at a time and checking for collisions with the obstacles
and with the previous robots. If a collision is found, then a new random configuration
for the robot being added is generated. Although this local planner is more expensive

7.5.3

7.5 Beyond Basic Path Planning 257

than checking all robots simultaneously, it is considerably more effective in covering
the space. The configuration returned by the call is the final configuration that was
computed. In the case where no robot can move, no configuration is returned. It has
been observed [14,43] that this strategy avoids the problem of producing many con-
figurations close to obstacles, a problem that arose from the direct application of EST
and RRT algorithms to multiple robots.

The SRT [14,43] algorithm presented in section 7.3 can be adapted to efficiently
plan for multii)le robots. SRT uses a prioritized approach for the computation of each
edge on the roadmap and an incremental centralized approach for the computation of
the configurations at the endpoints of the edges. An advantage of SRT is that it can be
run in parallel to cut the cost of computation for solving planning problems involving
many robots.

Manipulation Planning

Another important area of motion planning is manipulation planning [15, 16, 36,
170, 241-243,335). An example that involves an animated character manipulating
different objects is given in figure 7.22. The objective is to move certain objects from
some initial configuration to a goal configuration while avoiding collisions with the
other objects and obstacles. Initially, the objects are static and at stable positions, e.g.,
resting against the obstacles or other stable objects. Since the objects cannot move
autonomously, the robot must grasp the object and move it from one stable position to
another, until it obtains the desired arrangement. A set of grasping positions at which
the objects can be grasped by the robot is given to the planner.

Figure 7.22 Manipulation example. (Courtesy of J. C. Latombe.)

258

7 Sampling-Based Algorithms

One approach to manipulation planning is to model the problem as fully dynamic
anduse control-based planning. This is expensive, however, and thus other approaches
have been developed that make a distinction between the transit and transfer parts
of the path [16,264]. Transfer paths are defined as motions of the system while the
robot grasps the object. Transit paths are defined as motions of the robot when it is not
grasping an object as it moves from one grasp to the next. The manipulation planner
is also responsible for computing regrasping operations. Fast planners are needed for
all three subproblems.

Initial attémpts to solve the manipulation problem [241,243] for robots with many
degrees of freedom proceed by finding a path for the object from gy t0 goar- The
planner then computes a series of transfer and transit paths for the robot that make it
possible for the object to move along the path computed in the first stage. Variational
dynamic programming [36] methods have also been used. A manipulation path is
initially computed by assuming that the object and the robot move independently.
Then an iterative process deforms the path to satisfy the constraints that the object
can only move when it is in a proper grasp.

In [335] a two-level PRM is developed to handle manipulation planning. The first
level of the PRM builds a manipulation graph, whose nodes represent stable placements
of the manipulated objects while the edges represent transfer and transit actions. The
second level of the PRM does the actual planning for the transfer and transit paths. The
computation is made efficient by verifying that the edges are collision-free only if they
are part of the final path. Otherwise, the local planner assigns a probability to the edge
that expresses its belief that the edge is collision-free. The resulting planner, called
FuzzyPRY, is yet another example of how sampling and connection strategies can be
used in the context of PRMs. More advanced recent methods use several specialized
roadmaps to address more complex problems and use manipulation planning as a
vehicle to connect task level AT planning and motion planning [170].

Manipulation is a broad topic in itself that has also been addressed with tech-
niques that do not fall under the general category of motion planning. For example,
parts feeding often relies on nonprehensile manipulation. Nonprehensile manipula-
tion exploits task mechanics to achieve a goal state without grasping and frequently
allows accomplishing complex feeding tasks with few degrees of freedom. It may
also enable a robot to move parts that are too large or heavy to be grasped and lifted.
Pushing is one form of nonprehensile manipulation. Work on pushing originated
in [311] where a simple rule is established to qualitatively determine the motion of
a pushed object. A number of interesting results followed: among them were the
development of a planning algorithm for a robot that tilts a tray containing a planar
part of known shape to orient it to a desired orientation [146], the development of an
algorithm to compute the shape of curved fences along a conveyor belt to reorient

7.54

7.5 Beyond Basic Path Planning 259

a given polygonal part [426], and the demonstration of a sequence of motions of
a single articulated fence on a conveyor belt that achieves a goal orientation of an
object [13]. A frictionless parallel-jaw gripper was used in [166] to orient polygo-
nal parts. For any part P having an n-sided convex hull, there exists a sequence of
2n — 1 squeezes achieving a single orientation of P (up to symmetries of the convex
hull). The result has been generalized to planar parts having a piecewise algebraic
convex hull [338]. It was later shown how to use a combination of squeeze and roll
primitives to orient a polygonal part without changing the orientation of the grip-
per [317]. Last but not least, distributed manipulation systems provide another form
of nonprehensile manipulation. These systems induce motions on objects through the
application of many external forces and are realized typically on a flat surface. One
way of implementing such forces is through the use of MicroElectoMechanical Sys-
tems (MEMS). Algorithms that position and orient parts based on identifying a finite
number (depending on the number of vertices of the part) of distinct equilibrium
configurations were given in [56]. Subsequent work showed that using a carefully
selected actuators field, it is possible to position and orient parts in two stable equi-
librium configurations [220]. Finally, a long standing conjecture was proven, namely
that there exist actuators fields that can uniquely position and orient parts in a single
step [55,256,399]. On the macroscopic scale it was shown that in-plane vibration
can be used for closed-loop manipulation of objects using vision systems for feed-
back [363], that arrays of controllable airjets can manipulate paper [431] and that foot-
sized discrete actuator arrays can handle heavier objects under various manipulation
strategies [302].

Assembly Planning

An assembly operation is typically defined as a merging motion of pairwise-separated
subassemblies into a new assembly. Two subassemblies are considered separated if
they are arbitrarily far apart from each other. During the operation each assembly is
treated as a single body and is not allowed to overlap with other subassemblies.

The assembly planning problem can be cast in a path-planning framework by con-
sidering one of the subassemblies that is to be merged as the robot and the other
as the workspace. The objective then becomes to find a collision-free path for the
moving subassembly to its final configuration. PRMs, ESTs, and RRTs have been used
successfully to solve these problems [192]. Using planners for determining merging
(or, equivalently, removal) paths for parts has important applications in the manufac-
turing cycle of new mechanical assemblies. E.g., when a new engine is designed, the
CAD model of the engine is available. Using this model a planner can test the removal
of various parts for maintainability purposes. Figure 7.2(d) shows such an example,

260

7.5.5

7 Sampling-Based Algorithms

Figure 7.23 An example of assembly planning. The objective is to separate the two «-shaped
pieces. (From Amato et al. [18].)

while figure 7.23 shows an assembly that is frequently used to test how well planners
can deal with the narrow passage problem.

It is worth noting that work on assembly planning has given rise to interesting
analysis methods in robotics. Besides planning, researchers have tried to analytically
determine the order in which the different parts of an assembly need to be assembled
[230,428,429] by using the NonDirectional Blocking Graph (NDBG) [428], which
represents all the blocking relations in a polygonal assembly.

Flexible Objects

Motion planning for flexible objects [22, 224, 255, 318] is an important problem
as several dpplications could benefit from planners that account for the physical
properties of the manipulated objects. For example, in industrial settings there is a need
to handle sheets of metal, pipes that can bend, and cables. In assembly maintainability
studies done with virtual prototyping, planning is used to compute a removal path for
a part from an assembly, given only the CAD model of the assembly. The flexibility of
the part needs to be considered as engineers use deformable parts to produce compact
assemblies. In medical and surgical procedures, flexible catheters are inserted in
human vessels. Accurate planning studies may help in choosing the size and properties
of the catheter to be used. In computer-assisted pharmaceutical drug design, path-
planning techniques are used to compute paths for drug molecules to their docking
sites. In that context, the rigorous treatment of the physical properties of the drug
molecule, expressed by its energy, is crucial for obtaining sequences that are of low
energy and can thus be encountered in nature.

A major difficulty in planning for flexible objects stems from the fact that the cor-
figuration space is potentially of infinite dimension. So there is a need for geometric

7.5 Beyond Basic Path Planning 261

representations that approximate well the possible shapes of the flexible object and
are still compact in terms of the number of parameters used. The energy of the object
needs to be taken into consideration as a path must not only be collision-free but also
energetically feasible. For example, if an elastic object is manipulated, care must be
taken to not bend or stretch the object excessively and permanently deform it. This
is achieved by keeping the elastic energy of the object below a predefined energy
threshold. The computation of the energy is typically expensive [224]. Presently,
there is no efficient way to relate the geometric representation of a flexible object
to its flexibility/deformation properties except in specific cases [318,319]. Collision
checking is finally a significant bottleneck for path planning for flexible objects. In
modern collision checking packages, some preprocessing of the robot is done to com-
pute an internal representation that is used to speed up collision checking [168]. As the
shape of the flexible robot changes continuously, such preprocessing is not possible
and, as a result, collision checking is very expensive.

One approach to obtaining realistic (physical) paths for flexible objects is to create
roadmaps of quasi-static nodes and then to connect the nodes using interpolating paths
of low-energy configurations. Quasi-static configurations can be found by energy
minimization or by physics-based simulation. Figure 7.24 shows a path for a thin
elastic metal sheet. In the considered setting, two actuators control the deformation of
the metal sheet by constraining the position of the two opposite sides of the sheet. The
path has been computed by the application of PRM [255]. Configurations of the object
in the roadmap are produced by first obtaining a low-energy random deformation and
then a random configuration with that deformation. Any computed paths keep the
elastic energy of the sheet below an energy minimum to avoid permanent deformations

Figure 7.24 An example of planning for flexible objects. The metal sheet needs to bend to
go through the hole. (From Kavraki [224].)

262

7.5.6

7 Sampling-Based Algorithms

of the object. Local deformation fields over the volume of the object can be used to
describe its deformation [255]. The choices for the local planner and the distance
measure in the above framework are nontrivial.

Recently, it has been shown that, in certain cases, it is possible to obtain geometric
representations for the flexible object that enforce certain physical properties of the
flexible object. For example, in [318,319] a low-dimensional representation is given
for a three-dimensional curve that enforces the length of the curve to be constant.
Hence there is no need for optimization procedures to maintain the the constant
length constraint, which in general speeds up computation. PRM roadmaps of low-
energy curves manipulated by actuators at their end points can then be constructed.

Finally, planning for flexible objects raises the issue of variable parametriza-
tion methods for the objects/robots [251]. It is sometimes necessary to change the
parametrization over time to capture the shape of the object as accurately as possible,
or to reduce the number of parameters of the problem, if the latter is feasible. When
planning with a variable parametrization, rules for relating motion between different
parametrizations must be established. In this case, the planner needs a mechanism
for deciding how much and when to reparametrize. The energy of the system can
also be seen as a heuristic that drives the exploration of tree sampling-based motion
planners [251].

In summary, planning for flexible objects raises important questions and challenges
to motion planning research. Planning for flexible objects in contact with obstacles
remains a largely unexplored problem.

Biological Applications

Motion planning algorithms can also be applied to problems from computational
structural biology [20,23-25,387,408,409,433]. The problems in this domain are
high-dimensional and of a complexity that tests the limits of current motion-planning
algorithms. This section considers protein folding and protein-ligand docking. The
first problem is a long-standing open problem in biochemistry. The second prob-
lem is central to understanding biomolecular interactions that regulate biochemical
processes and can lead to the generation of new therapeutics. An example of fold-
ing is given in figure 7.2(g). Different three-dimensional representations of a widely
targeted protein and a ligand are shown in figure 7.25.

A protein is a linear sequence, or polymer, of amino acid residues. The genome
codes for twenty different residues give rise to a great variety of possible protein
sequences, and a corresponding variety in three-dimensional structure and func-
tion. Proteins are broadly classified by their function: enzymes catalyze biochem-
ical reactions; regulatory proteins modulate gene expression; peptide hormones and

7.5 Beyond Basic Path Planning 263

(2) (b

(e) ®

Figure7.25 Docking examples. (a) HIV-I protease and-docked ligand (PDB ID 4HVP), where
the receptor (HIV-I protease) is rendered as a Connolly surface. The complex was obtained
using x-ray crystallography. (b) Receptor—HIV-I protease—rendered with backbone atoms
only. (c) Receptor rendered showing a-helices and S-sheets. (d) Receptor rendered as linkage.
(e) Receptor rendered as stick model. (f) Receptor’s backbone rendered as a tube. In all figures,
the ligand is rendered using a sphere for each of its atoms and can be found close to the center
of the HIV-1 protease.

264

7 Sampling-Based Algorithms

signaling proteins carry chemical messages both within and between cells; and struc-
tural proteins make up microfilaments and microtubules, which act as frameworks
and molecular transport routes within cells, as well as macroscopic structures such
as hair, claws, and silk.

Folding and Docking

A guiding principle in biochemistry is that molecular structure determines function.
This is particularly evident in proteins where the biological function is strongly deter-
mined by the protein’s ability to fold into a stable three-dimensional structure, also
known as its native configuration. It is very important that proteins be able to reach
and maintain their native configuration since failure to do so would render the protein
nonfunctional. The pathway that the protein follows to reach its native configura-
tion is hard to determine experimentally because the intermediate steps usually occur
too rapidly to detect. The folding problem is concerned with trying to understand and
characterize the sequence of motions followed by a protein to go from a disorganized,
unfolded state to its highly ordered native configuration. A number of diseases result
from the misfolding of a particular protein, so an understanding of how normal pro-
teins fold may eventually aid medical researchers in understanding what goes wrong
when a protein misfolds, and what medical intervention may ultimately be possible.

Docking is an equally important problem. The biological function of enzymatic
and signaling proteins is often achieved by their ability to bind transiently to and react
with smaller molecules, known as ligands. This binding (docking) usually takes place
in a distinctive cleft in the protein’s surface known as the binding pocket or active
site. The ability of a receptor protein to dock a given prospective ligand depends on
the geometric matching of the ligand and the binding pocket, as well as the presence
of stabilizing chemical interactions between atoms of the ligand and atoms on the
surface of the binding pocket. When the receptor succeeds in docking a ligand the
free energy of the biomolecular complex is lower in the docked configuration than
any other possible configuration of the complex. Many drugs act by blocking the
active site of an enzyme or by binding to a signaling protein and either blocking it or
enhancing its activity (see figure 7.25). Finding anew drug candidate starts by finding
a compound that binds to a particular site on a protein’s surface. The screening of a
large number of potential ligands or drug candidates in the laboratory is very slow
and expensive. Computational docking methods therefore offer substantial savings
in both time and money to pharmaceutical researchers by providing promising leads
from a database of hundreds of thousands of known compounds, given a particular
receptor. Laboratory tests can then proceed only on those compounds predicted to
dock well in simulation.

7.5 Beyond Basic Path Planning 265

Several researchers have used sampling-based motion-planning techniques for pro-
tein folding and docking problems [20,23-25,387,408,409]. The notion of configu-
ration space offers a layer of abstraction that allows for problems from other areas to
be cast as motion-planning problems.

Application of PRM Methods

Any molecule can be seen as a collection of atoms and bonds between pairs of atoms.
An underlying graph representation of a molecule can be constructed with atoms
at the vertices and bonds on the edges. A common simplification that works for
most molecules is to represent a cycle in the graph, which corresponds to a ring in
the molecule, as a single special atom that is connected by bonds to the rest of the
molecule. It follows then that the underlying graph is a tree. One atom, called the
anchor, is chosen arbitrarily as the root of the tre¢. Thus the molecule is represented
as a treelike articulated robot [433]. For each atom, information is kept about its mass,
van der Waals radius, and other physical properties relevant to predicting interactions
with other atoms. For each bond, information is kept about the bond length, which
is the separation distance between the two atoms the bond connects; the bond angle,
which is the angle between a given bond and the previous bond in the direction
toward the anchor atom; and the set of possible torsional (or dihedral) angles, which
expresses the possible rotations of the structure at one end of the bond with respect
to the structure at the other end. A bond is fixed if its dihedral angle must remain
constant, otherwise it is rotatable. A common assumption is to consider bond lengths
and angles as fixed, with dihedral angles as the only variables. Figure 7.26 offers an

Figure 7.26 An example of a small molecule where arrows indicate rotatable bonds.

266

7 Sampling-Based Algorithms

example for a small ligand. A small ligand may have 5-15 dihedral angles, while a
protein has a few hundreds of dihedral angles. Robotics methodologies can be used
to encode dihedral angles and efficiently compute molecular configurations [433].

Both folding and docking involve the exploration of a high-dimensional energy
landscape for low-energy configurations or complexes. For a PRM roadmap that aims
to explore the energy landscape of a small protein, node configuration can be gen-
erated by selecting uniformly at random values for the dihedral angles from their
allowable range. Random configurations, however, do not all correspond to feasible
configurations of the molecule that can be observed experimentally. The validity of a
configuration is determined by the potential energy of the corresponding configura-
tion, denoted Eonf,. The potential energy of a configuration depends on the properties
of the atoms and the values of the dihedral angles and can be explicitly computed [387].
A configuration is considered feasible if its potential energy is below some threshold
Enax. In addition to detecting unfavorable interactions, the use of an energy cutoff
implicitly allows collision detection: most force fields include a term that imposes
an exponential energetic penalty for overlapping atoms. In [21,387], the following
probability is used to add a configuration to the roadmap:

0, ifEconﬁg > Enax
. max— Eq .
Pr{config 1s accepted) =]ﬁ, HEmin < Econfig £ Emax
1’ ifEconﬁg =< Emin-

Selecting configurations as shown above results in denser sampling of low-energy
configurations. For each configuration, a set of k closest neighbors is computed using
either the Euclidean or least-root-mean-square distance as the metric. Neighboring
configurations are connected by performing linear interpolation between the two
configurations and checking that all the intermediate configurations correspond to
feasible configurations. A weight is associated with each local path that reflects the
difficulty of traversing the path. The probability of traversing a path is computed by
using the energy of each intermediate configuration. Based on the ideas presented
above, roadmaps have been constructed for exploring the energy landscape for the
docking problem [387]. Also PRM roadmaps are used for tracing protein-folding or
RNA-folding pathways [20,21,408] when the native configuration is known. Finally,
for exploring the energy landscape of a protein a novel method influenced by PRM has
been developed. Stochastic Roadmap Simulation [23-25] allows the simultaneous
analysis of motion pathways and the computation of ensemble properties over the
entire molecular energy landscape.

Computational structural biology offers challenging problems of unprecedented
scale. Some promising solutions are currently influenced by a robotics methodology.

Problems 267

It is conceivable that, in the near future, we could see novel robotics planning methods
inspired by biological problems.

Problems

1. You are given a rigid-body robot that can freely translate and rotate in an empty three-
dimensional ‘box. Quaternions are used to represent the configurations of the robot.
Implement a procedure that generates random free configurations of the robot. Implement
an efficient planner that connects two configurations.

2. Implement a procedure that determines if two polygons in a plane are in collision.

3. Implement an efficient local planner for four robots that move in the plane. There are no
obstacles.

4. Define two functions to compute the distance between two configurations of three-
dimensional rigid and articulated robots and discuss their advantages and disadvantages.

5. Implement the closest neighbors query using one of the distance functions defined in the
previous problem and a grid-based approach.

6. Implement a basic PRM planner for a single robot operating in a two-dimensional Euclidean
space. Assume that the robot and the obstacles are polygons.

7. Modify your implementation of PRM to include one of the sampling strategies discussed in
section 7.1.3, e.g., Gaussian, bridge-test, and so on.

8. Implement one of the path-smoothing strategies discussed in section 7.1.2.

9. Implement a tree-based planner such as SBL or RRT for a point robot. Display the generated
trees.

