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Abstract—In this article, we present a multi-robot task and
motion planning method that, when applied to the rearrange-
ment of objects by manipulators, results in solution times up to
three orders of magnitude faster than the existing methods and
successfully plans for problems with up to 20 objects, more than
three times as many objects as comparable methods. We achieve
this improvement by decomposing the planning space to consider
manipulators alone, objects, and manipulators holding objects. We
represent this decomposition with a hypergraph where vertices
are decomposed elements of the planning spaces and hyperarcs
are transitions between elements. The existing methods use graph-
based representations where vertices are full composite spaces and
edges are transitions between these. Using the hypergraph reduces
the representation size of the planning space for multimanipulator
object rearrangement, the number of hypergraph vertices scales
linearly with the number of either robots or objects, while the
number of hyperarcs scales quadratically with the number of
robots and linearly with the number of objects. In contrast, the
number of vertices and edges in graph-based representations scales
exponentially in the number of robots and objects. We show that
similar gains can be achieved for other multi-robot task and motion
planning problems.

Index Terms—Cooperating robots, motion and path planning,
multi-robot systems, task planning.

I. INTRODUCTION

THE use of autonomous robotic systems is rapidly
increasing. This can be seen in warehouse management,
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manufacturing, household chores, healthcare, etc. In many
of these settings, multi-robot systems are leveraged to
complete tasks that a single robot cannot do through inter-robot
cooperation and increase throughput by working in parallel.
These improvements in effectiveness often require complex
coordination for both task and motion planning.

Unfortunately, the planning space for these problems is very
large. For a single robot, it is intractable in the general case
to represent explicitly [1], [2], and it grows exponentially for
the composite space of multi-robot systems. Task and motion
planning adds additional dimensions to the tasks present.

For simpler problems, decoupling the planning space into
individual robot state spaces results in faster planning times.
However, decoupled approaches cannot handle high levels of
coordination. Thus, the existing multi-robot task and motion
planning (MR-TMP) approaches primarily plan in the composite
space and cannot efficiently plan for large, complex multi-robot
systems.

Some problems, such as payload transportation, model tasks
abstractly and often ignore the physical dimensions of the
tasks during planning [3], [4], [5]. Other problems, especially
those involving object manipulation, must consider physical
constraints [6], [7], [8], [9], [10]. Here, the coordination required
limits the use of decoupled methods, and the planning space
grows too large to apply composite methods.

Hybrid search techniques that balance the strengths and
weaknesses of coupled and decoupled approaches have shown
promise in recent multi-robot motion planning (MRMP) meth-
ods [11], [12]. However, before our work, hybrid search tech-
niques were not used for problems requiring more complex
coordination, such as MR-TMP.

In this article, we present the decomposable state-space
hypergraph (DaSH) method, a general multi-robot planning
framework based on a hypergraph representation that can both
incorporate the existing composite and decoupled multi-robot
methods and enable new hybrid methods. We present a novel
hybrid search technique based on the DaSH representation that
captures the coordination and complexity in MR-TMP problems
while scaling to larger numbers of robots and tasks. Additionally,
our method successfully plans for higher ratios of tasks to robots
(10:1), which the existing methods, such as [10], struggle with.

Our approach supports varying levels of (de)coupling of
the planning space at different problem stages. The degree of
coupling should be tailored to the problem and its corresponding
planning space and can change to fit different problem stages. We
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Fig. 1. We demonstrate our proposed approach for the multimanipulator
sorting problems with a pair of UR5e manipulators. The robots must sort the
blocks into bins of the corresponding color. This figure captures the moment in
which the robots are performing a handoff. A full video of the sorting demo can
be found at https://youtu.be/MSyeYXu0Xzs.

Fig. 2. Figures and table provide an illustration of the contrast in representation
sizes for composite (graph) and decoupled/hyrbid (hypergraph) search spaces
for multimanipulator problems. The details of the problem constraints can be
found in Section VII. (a) Composite (graph) representation of the task space for 2
robots and 4 objects contains 21 vertices and 120/60 directed/bidirectional edges.
The decoupled (hypergraph) representation for the same problem contains 14
vertices and 24/12 directed/bidirectional hyperarcs. (b) Number of vertices and
directed transitions (edges/hyperarcs) are given for increasing problem sizes.
The reduction in the size of the hypergraph representation is significant when
increasing both robots and objects. The graph representation quickly becomes
too large to use efficiently, while the hypergraph remains relatively small.

support this with hybrid composition representations for several
planning spaces that capture varying degrees of (de)coupled
spaces depending on the coordination required.

Take, for example, a multimanipulator problem involving a
handoff between two robots, as depicted in Fig. 1. Different
levels of coordination are required at different stages of plan-
ning. Robots operate mostly independently in their individual
state spaces. The joint space of a single robot and an object
is important while picking/placing the object or while carrying
the object, and the joint space of both robots and an object is
important while planning a handoff between the two robots.

These decoupled and hybrid composition representations of-
ten remain sparse as the number of robots and tasks (or objects)
increase. In contrast, the size of pure composite representations
scales exponentially with both the number of robots and tasks.
A small illustration of the size difference is shown in Fig. 2.
As a result, existing methods, which plan in the composite

space, are forced to use implicit representations of the composite
space and engineer heuristics, which make assumptions about
the underlying problem structure. Our decoupled and hybrid
representations can be explicitly constructed and leveraged into
powerful heuristics informed directly by the representation lead-
ing to significant performance gains.

Additionally, prior multimanipulator methods, such as [10],
struggle as the number of tasks (or objects) increases relative
to the number of robots. Our proposed representation flips the
scaling paradigm where tasks (or objects) are no longer the
limiting factor. As a result, DaSH supports higher ratios of
objects to robots, which is appropriate for manipulation tasks
where a few robots should handle many objects.

We demonstrate the ability of the DaSH method to generalize
too many MR-TMP problems, including MRMP and multima-
nipulator rearrangement. For the rearrangement planning prob-
lem, we illustrate how the number of vertices in the hypergraph
scales linearly with both the number of robots and objects, while
the number of hyperarcs scales quadratically with the number
of robots and linearly with the number of objects (see Fig. 2)
and demonstrates improved planning times on both physical (see
Fig. 1) and virtual multi-robot systems [see Fig. 13(a)].

In summary, our contribution is given as follows.
1) A generalized definition of the multi-robot planning space

for composite, decoupled, and hybrid approaches.
2) A novel hypergraph representation for varying cou-

pled/decoupled spaces in multi-robot planning problems.
3) A general planning algorithm that exploits this hypergraph

representation.
4) The application of this approach to the multi-robot motion

planning space (MRMP-DaSH) and to the multimanipu-
lator planning space (MM-DaSH).

5) A theoretical analysis of the size of the proposed hy-
pergraph representation compared with the traditional
graph representations for multimanipulator rearrangement
problems.

6) An experimental evaluation of the planning algorithm
applied to the multimanipulator rearrangement problem.

II. BACKGROUND AND RELATED WORK

In this section, we give an overview of the background and
related work for MR-TMP.

A. Motion Planning

The degrees of freedom (DOFs) of a robot fully parameterize
its position. They may contain the robot’s pose, orientation, joint
angles, etc. A specification of DOF values for a robot defines
a configuration. Motion planning considers a continuous state
space comprised of the set of all robot configurations known as
configuration space (Cspace) [13].

The motion planning problem is to find a continuous path from
a start location to a goal location through the subset of Cspace
consisting of valid configurations called free space. Cspace is
usually intractable to represent explicitly [1], [2]. To handle
the complexity of planning in Cspace, sampling-based motion
planners, such as the probabilistic roadmap method (PRM) [14],
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attempt to create a discretized approximation of the connectivity
of the Cspace known as a roadmap. A roadmap is a graph in which
vertices are individual configurations and edges represent the
transitions between a pair of configurations. Paths are found by
searching over this roadmap.

B. Multi-robot Motion Planning

MRMP considers the composite Cspace of the system. This
composite space is defined as the Cartesian product of the Cspace
of each individual robot. This space grows exponentially with
the number of robots.

There are three main approaches to MRMP. Coupled plan-
ners plan directly within the composite space [15], [16]. They
struggle to plan for large numbers of robots and are often
slow, but they are able to provide probabilistic completeness.
Decoupled methods consider individual robot Cspace to find a
set of paths [15], [17]. They are typically faster but usually lack
completeness and optimality guarantees. Hybrid methods, such
as conflict-based search for motion planning (CBS-MP) [11],
seek to leverage the strengths of both composite and decoupled
planners. They often iteratively plan within individual robot
Cspaces (or the composite space of a subgroup of the robots)
while reconciling plans against each other. Hybrid methods
usually achieve planning times similar to decoupled methods
while offering the completeness and optimality guarantees of
composite methods.

C. Task and Motion Planning

When we consider planning problems with objects that can
be moved by robots, we enter the domain of task and motion
planning [18]. If we model the state of the entire world (robots
and objects) as a configuration spaceW , we end up with a highly
underactuated system. We only have direct control over the robot
DOFs, while object sDOFs can only be changed indirectly by
the robot acting upon them. Additionally, the actions the robot
takes affect motion feasibility. For example, a valid motion for
a robot not holding an object may no longer be valid if the robot
is grasping an object, and the current placement of the objects
affects the feasibility of motions.

One approach is to treat each combination of the robot and
held object as a unique robot and each placement of objects as a
new environment. This is sometimes called multimodal motion
planning [19], [20], [21], although this language is less intuitive
than task and motion planning and can be confused for motion
planning with different modes of locomotion.

Instead, we define a task space T , where element Ti ∈ T
defines which object the robot is holding (or none), the corre-
sponding grasp constraints, and valid poses for all ungrasped
objects. This defines a new configuration space Wi for the
system. Details of this are provided in Section III.

A system can switch between task space elements by applying
an action that changes the constraints of valid motion. For
example, performing a pick action on an object removes the
constraint that the object is on a stable surface and adds the
constraint that the object is in a stable grasp for the robot.

A system can only switch between task space elements at
configurations that are valid within the elements it is switching
between. In practice, these are often stable grasps of objects that
are sitting at stable poses on some surface in the environment
or handoffs at the intersection of stable grasp poses for a set
of robots [8]. These configurations satisfy the constraints of the
task space element defining the robot grasping the object and the
task space element where the object is located at that stable pose.
Depending on the direction of the switch, these configurations
can represent the moment of a pick or place action. Finding these
transition configurations is considered the most challenging part
of multimodal planning [18].

It is often best to view classic task and motion planning
problems as hybrid discrete–continuous search problems [18].
A solution consists of a finite and discrete sequence of task space
elements (e.g., which object to grasp) with continuous constraint
parameters (poses and grasps of objects), and continuous motion
paths within the configuration spaceWi of each task state Ti to a
configuration in the intersection with the subsequent task space
element’s configuration space.

D. Multi-robot Task and Motion Planning

In multi-robot systems, a task space element consists of the
same types of constraints (object poses and grasp constraints in
manipulation problems) as in single-robot systems. However, in
this domain, there is a combinatorial expansion in the number of
task space elements available to the system as both the number
of robots and objects grow [22].

The three classes of MRMP (coupled, decoupled, and hybrid)
apply here as well. Most task and motion planning problems
require too much coordination for decoupled methods to be
useful. Although some of our prior work has explored hybrid
search techniques in the MR-TMP domain, the approach does
not extend to manipulation problems [3]. The rest of this section
discusses coupled approaches.

Previous work in the area has had two main focuses to
handle the space complexity: developing representations and
developing heuristics. Umar et al. [23] use a shared manipulator
workspace to build a shared space graph to reason over multi-
robot cooperation and adapt a path planning heuristic for multi-
manipulator planning. Assumptions about reachability and the
number of robots required to securely grasp an object are used
in [8] to build a condensed graph representation. This represen-
tation is integrated into later work with an MRMP method [24]
to create a full multi-robot multimodal planner [9]. This planner
introduces a high-level object-mode graph to represent valid
transitions among pick, place, and handoff configurations. This
graph is used as a heuristic to guide the multimodal motion plan-
ning through sequences of modes that form a valid solution. All
three of these methods [8], [9], [23] only plan for a single object.

In [10], the work in [9] is expanded to account for multiple
objects. The single-object-mode graph in [9] is replaced with an
object-centric-mode graph where vertices correspond to manip-
ulators and stable surfaces. Instead of searching over object (or
task state) switches for a single object, a multiagent pathfinding
(MAPF) technique is proposed to find nonconflicting individual
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Fig. 3. (a) Figure shows the starting task space element of the system where the object is at rest at a stable pose on the table. (b) Pick action results in a switch to
the middle left task space element where the red robot is grasping the object. (c) Handoff action creates another switch transferring the object from the red robot
to the blue robot. (d) Finally, a place action returns the system to a stable pose task space element.

object-mode sequences over the available manipulators and sta-
ble surfaces. The transfer of multiple objects at once complicates
the reasoning over both the sequence of modes and the motion
planning. The authors simplify the problem by considering
synchronized actions for the set of manipulators in the problem.
This allows a single step in the MAPF solution over the object
centric-mode graph to both indicate a set of actions for the robots
to perform and define a more constrained MRMP problem.

Using MAPF over the object-centric-mode graph as a heuris-
tic, the synchronized multiarm rearrangement (SMART) is able
to efficiently plan for up to nine robots [10]. The heuristic is
formulated as an MAPF problem over the object-centric-mode
graph. The method is biased to greedily move the object-centric-
mode state forward along the corresponding MAPF solution.
When the MAPF solution is simple and the paths for individual
objects are not likely to use the same robots at the same time, this
greedy heuristic performs exceptionally well. However, when
the paths for objects are likely to conflict, or the number of
objects increases relative to the number of robots (increasing the
density of the MAPF problem), this heuristic becomes limiting.
This is reflected in [10] as no result is shown for more than four
objects. We directly compare our method against SMART [10]
in later sections.

Recent work, such as the work of Pan et al. [25], has addressed
more complicated manipulation tasks, such as tower stacking
and obstructing obstacles, although they still struggle to scale
the number of objects relative to the number of robots with
the highest ratio coming with six objects for two robots. The
evaluation of the method’s ability to handle increasing numbers
of robots only considers very simple task problems where each
robot has a very clear correct role [25]. We show the ability to
solve similar problems in Section VIII and obtain higher ratios
of objects to robots in our more general experiments.

All of these methods focus on a single short-term task involv-
ing a small set of obstacles. In contrast, Hartmann et al. [26]
present a long-horizon MR-TMP construction method, which
decomposes problems with up to 113 objects into subproblems
each focused around a single object. Methods, such as the one
presented here and [25], can be integrated into the long-horizon
framework of [26] to address more complicated subtasks within
long-horizon problems. We do not address this integration in
this work.

E. Directed Hypergraphs and Hyperpaths

A hypergraph H = (V, E) is a generalization of a graph,
where V = {v0, v1, . . ., vn} is the set of vertices, and

Fig. 4. (a) Directed hyperarc represents a transition from the vertices in the tail
set on the left to the vertices in the head set on the right. (b) Bidirectional hyperarc
indicates that the transition can happen in either direction. It is essentially a pair
of directed hyperarcs with opposite tail and head sets.

E = {E0, E1, . . . ,Em}, with Ei ⊂ V for i ∈ [0,m], is the set
of hyperedges. Unlike edges in a regular graph, a hyperedge
E ∈ E is not restricted to pairs of vertices. In this work, we
consider directed hypergraphs, as described in [27].

1) Directed Hypergraph: A directed hypergraph has directed
hyperedges, or hyperarcs, so that a hyperarc Ei has both a head
set Head(Ei) ⊆ V and a tail set of vertices Tail(Ei) ⊆ V . A
visual depiction of directed hyperarcs is given in Fig. 4, and a
depiction of a directed hypergraph is given in Fig. 5(a). In this
article, all hypergraphs discussed will be directed hypergraphs.

2) Directed Hyperpath: We use directed hyperpaths, as de-
fined in [27]. A path in a hypergraph is a sequence of vertices
and hyperarcs v0, E0, v1, E1, . . ., vfinal such that vi ∈ Tail(Ei)
and vi+1 ∈ Head(Ei) for all vertices and edges in the path [see
Fig. 5(b)]. A path is simple if all hyperarcs are used at most once.

A hyperpath Πst is a minimal hypergraph HΠ = (VΠ, EΠ)
such that

EΠ ⊆ E (1)

s, t ∈ VΠ =
⋃

Ei∈EΠ

Ei ⊆ V (2)

x ∈ VΠ ⇒ x is connected to s in Πst

through a cycle-free simple path. (3)

The set of hyperarcs EΠ in the hyperpath Πst must be in the
original hypergraph H (1). The set of vertices VΠ consists of
all vertices incident to a hyperarc Ei ∈ EΠ, and the source s
and target t must be included in VΠ (2). Every vertex must be
connected to the source s in the hyperpath through a cycle-free
simple path (3). Thus, the hyperarc from {v0, v1} to {v2} in
Fig. 5 cannot be included in a hyperpath from source v0 as v1 is
not connected to v0 via a cycle-free simple path.
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Fig. 5. (a) Directed hypergraph consists of vertices and directed hyperarcs. (b) Simple path in a directed hypergraph from v0 to v7. No hyperarc is used more
than once. (c) Directed hyperpath from v0 to v7. Every vertex incident a hyperarc in the hyperpath is included. All vertices are connected to the source v0 by a
cycle-free simple path.

III. PROBLEM DEFINITION

In this section, we define the MR-TMP problem and the
corresponding planning space for a set of moveable bodies B.
Our definition generalizes the coupled, decoupled, and hybrid
representations used in multi-robot planning. In Sections V
and VI, we show how previous MRMP and MR-TMP methods
fit into this definition, and how it enables the hybrid MR-TMP
approach presented in Section IV. In the following paragraphs,
we explain this definition in the context of MRMP and
multimanipulator rearrangement planning.

A. Planning Space

We consider a task space T consisting of elements
Ti = (Bi,Wi, Ci), where Bi ⊆ B is a subset of the moveable
bodies, Wi is the Cspace for Bi, and Ci is a set of constraints,
which defines validity inWi. Constraints in Ci may only apply
to the moveable bodies inBi; thus, the validity of a configuration
w ∈ Wi cannot depend on a moveable body b /∈ Bi.

Task space elements can be further decomposed into addi-
tional sets of elements or combined with other elements. We
denote the decomposition of a task element Ti = (Bi,Wi, Ci)
into a set of task space elements as D(Ti) ⊆ T . A task space
element Tj = (Bj ,Wj , Cj) belongs to D(Ti) if Bj ⊆ Bi,Wj

is a subspace ofWi, and Cj ⊆ Ci. This resembles a power set,
althoughWj is a subspace ofWi and the constraints in Cj only
apply to robots in Bj , etc.

We denote the combination of task space elements
Tj = (Bj ,Wj , Cj) and Tk = (Bk,Wk, Ck) to create Ti =
(Bi,Wi, Ci) as Tj + Tk = Ti. In the resulting element Ti,
Bi = Bj ∪Bk, and Wi is the corresponding Cspace. We assume
that no moveable bodies may ever be in collision with each other,
so Ci = Cj ∪ Ck ∪ {no collision between bp, bq ∈ Bi}.

Each MR-TMP problem has a set of admissible task space
elements T ∗ ⊆ T such that, for any Ti = (Bi,Wi, Ci) ∈ T ∗,
the moveable bodies Bi = B and constraints Ci define an ob-
tainable set of configurations in Wi for the system (i.e., the
system designer considers these acceptable configurations).

The MRMP problem for a group of robots B is often defined
to consider the composite configuration space C0 × · · · × C|B|−1
such that Ci is the configuration space for robot bi ∈ B. A
configuration is valid if no robot is in collision with any obstacle
in the environment and no two robots are in collision with each
other. An MRMP solution consists of a continuous valid path
from some start point wstart to some goal point wgoal, where
wstart, wgoal ∈ C0 × · · · × C|B|−1.

Fig. 6. Figure depicts the task space for MRMP. The top row indicates the
admissible element containing all robots and collision constraints. This is the
space composite methods plan. The last row represents a set of fully decoupled
elements, each containing a single robot. All other combinations of robots with
their collision constraints also exist in the task space (in the intermediate rows).

The task space TMRMP for the MRMP problem contains a single
admissible element. In the MRMP problem, T ∗ = {TCOMPLETE =
(BCOMPLETE,WCOMPLETE, CCOMPLETE)} such that CCOMPLETE contains
all the MRMP constraints, BCOMPLETE = B, and WCOMPLETE =
C0 × · · · × C|B|−1. Composite MRMP methods plan motions
directly within TCOMPLETE.

The full set of elements in TMRMP can be obtained from the
decomposition of TCOMPLETE such that TMRMP = D(TCOMPLETE), as
shown in Fig. 6. Fully decoupled MRMP methods, which plan
motion separately for each robot bj ∈ B, plan within task el-
ements Tj = (Bj ,Wj , Cj), where Bj = {bj}, Wj = Cj , and
Cj defines validity for bj independent of other robots. Hybrid
MRMP methods move between different levels of task space
element decomposition and combination. Both decoupled and
hybrid MRMP methods construct a solution inTCOMPLETE by com-
bining their solutions with other elements. This often requires
the reenforcement of the inter-robot collision constraints relaxed
when decomposing task space elements.

More generally, MR-TMP problems may have several admis-
sible task space elements. For example, an object manipulation
problem may have an admissible element for every combination
of robot–object grasps. Furthermore, the start and goal of a
problem may belong to different task space elements. A valid
motion path from the start to the goal must then transition
between task space elements.

A path may transition between a pair of elements Ti and Tj

at a transition configuration w, which is valid in Ti + Tj so long
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Fig. 7. Hyperarc captures the grasp of an object. The transition requires both
the task space element for the robot not holding an object and the object not
holding and resting on a stable surface. These together form the tail set. The
transition moves the robot and object into a new task space element where the
robot is now grasping the object.

as Ti and Tj contain the same moveable bodies Bi = Bj . An
MR-TMP solution, thus, consists of both a sequence of elements
in T ∗ and a valid continuous motion path through them.

In object manipulation problems, T ∗ ⊆ TMANIP contains
elements, which denote which robot is grasping which object.
These often resemble the task space elements, as depicted in
Fig. 3. Most existing multimanipulator planning methods are
composite approaches that plan only in task space elements
in T ∗. Transitions between task space elements (e.g., mode
switches in [10] and [18]) correspond to pick, place, and handoff
actions. Solutions consist of a sequence of these transitions
between task space elements in T ∗ and valid paths within each
task space element between transition configurations.

True decoupled approaches, which plan with elements in
the decompositions of admissible elements, are likely to
fail to find a plan for manipulation problems due to the
transition requirement of two elements Ti and Tj containing
the same moveable bodies Bi = Bj . For example, elements
Ti = (Bi,Wi, Ci) and Tj = (Bj ,Wj , Cj), where Bi contains
only robot ri and Bj contains only object oj , cannot transi-
tion to an element Tk = (Bk,Wk, Ck), where Bk = {ri, oj} in
a decoupled approach; thus, ri cannot grasp oj . Considering
an element, which contains both ri and oj before the grasp
constraint, is applied instead of Ti and Tj address this issue;
however, when ri needs to manipulate another object or oj
needs to be manipulated by another robot, the same issues
arise. This quickly forces decoupled approaches to only consider
the admissible elements to find a feasible solution, which is
equivalent to composite approaches.

However, hybrid methods can effectively plan with decoupled
nonadmissible elements. These approaches, which can move
between different levels of task space element decomposition
and combination, can transition between Ti + Tj = Tl and Tk

so long as Bi ∪Bj = Bk and there exists a valid configuration
in both Wl and Wk (see Fig. 7). Thus, transitions can occur
between sets of task space elements so long as there exists a
transition between the combination of elements on either side of
the transition. Just as in MRMP, hybrid methods must ensure that
a solution constructed in elements decomposed from elements in
T ∗ is a valid solution in the elements in T ∗. This article presents
a hybrid approach to MR-TMP.

Algorithm 1: High-Level Approach.
1: Procedure APPROACH(Task and Motion Planning

Problem)
2: Soptimisitic,Sbest ← ∅
3: while not converged do
4: H ← ExpandRepresentation(H)
5: while Sbest not optimal forH do
6: Soptimisitic ← ComputeTaskPlan(H)
7: Scomplete ←

ResolveConflicts(H,Soptimistic)
8: if Scomplete.cost < Sbest.cost then
9: Sbest ← Scomplete

10: if earlyTermination and Sbest 
= ∅ then
11: return Sbest

12: return Sbest

IV. METHOD

We propose the DaSH method, a general MR-TMP method
based on the problem formulation, as presented in Section III.
We first present an overview of the method, followed by a de-
tailed description of the representation and construction process.
We then define the task search and motion conflict resolution
stage. Finally, we discuss several variants of the method and
their theoretical properties.

A. Overview

Our approach consists of three stages: representation con-
struction, task planning, and conflict resolution.

The DaSH method first builds the representation layers and
then queries them to generate task plans. We introduce a hier-
archy of hypergraph-based representation layers, which capture
increasing levels of information. The highest layer contains the
task space and transitions between task space elements. The
middle layer encodes motion feasibility within the constrained
configuration spaces in the task space elements. The final layer
represents the search itself and includes the transition history of
potential solutions.

Task plans are computed by finding a hyperpath through
this final representation layer. This includes continuous motion
paths within different task space elements. Thus, a final conflict
resolution stage ensures that there are no interpath collisions
between different task space elements. A solution then consists
of a sequence of admissible task space elements and a valid
motion path through them.

We include two variants in Algorithm 1. An earlyTer-
mination option can be used to return the first found solution
(line 11). This does not offer any optimality guarantees, although
we will show later that it can be probabilistically complete.

For an asymptotically optimal solution, we first continuously
expand the representation on line 4. Then, we use a hybrid ap-
proach inspired by the work in [4] to find the optimal solution for
the current representation (lines 5–11) by iteratively computing
and validating task plans. Additionally, at anytime, behavior can
be gained by returning a valid Sbest before convergence. Details
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Fig. 8. This image depicts the task space hypergraph for a multimanipulator
problem with two robots and one-object system. The vertices represent the set
of task space elements obtainable in the system. The hyperarcs encode the set of
allowed transitions available by applying pick, place, and handoff actions. The
set of admissible task space elements that can combine to create is captured in
Fig. 3, and the colors generally correlate. The red vertex represents Robot 1 not
holding any object. The blue vertex represents Robot 2 not holding any object.
The yellow vertex represents the object in a stable pose. The combination of
these three vertices creates the admissible task space element, as depicted in
Fig. 3(a). The hyperarc from the red and yellow vertices to the orange vertex
denotes a pick (or place) action and includes only the moveable bodies involved.
The hyperarc from the orange and blue vertices to the red and green vertices
encodes a handoff action (as the one depicted in Fig. 7), and the hyperarc from
the green vertex to the yellow and blue vertices encodes a place (or pick) action.
This sequence is the same as the sequence of admissible task space elements,
as depicted in Fig. 3, but only the moveable bodies that experience change are
involved in the hypergraph transitions.

of these variations are discussed in Section IV-F. Probabilistic
completeness and asymptotic optimality are both dependent
upon the underlying construction and search methods used in
each stage.

B. Task Space Hypergraph

As defined in Section III, task planning can be repre-
sented by a task space T where each task space element
Ti = (Bi,Wi, Ci) ∈ T includes a set of moveable bodies
Bi ⊆ B, the configuration space Wi for Bi, and a set of con-
straints Ci defining validity inWi. Task space elements can be
decomposed or combined, as defined in Section III. Additionally,
transitions can occur between sets of task space elements so long
as all moveable bodies present on one side of the transition are
present on the other side of the transition.

We propose a task space hypergraphHT = (VT , ET ) to model
the set of task space elements and their relationships (see Fig. 8).
Each vertex vT =< Ti >∈ VT encodes a task space element
Ti ∈ T . Hyperarcs ET =< Tail, Head >∈ ET encode either
a composition or transition relationship from a tail set of task
space elements to a head set of task space elements (see Fig. 7).

Composition hyperarcs Ecomp
T ∈ ET represent a change in the

compositions of moveable bodies, their configuration spaces,
and constraints. These may correspond to a decomposition,
combination, or a mix of the two.

Transition hyperarcs Etrans
T represent a transition between

the configuration spaces and/or constraints for a set of moveable
bodies. For both types, the set of elements in the tail must be
independent (i.e., no overlapping moveable bodies). Similarly,
the set of elements in the head set must be independent.

A set of composition rules may be used to restrict the allow-
able decompositions and combinations of task space elements

Fig. 9. This motion hypergraph is an augmentation of the multimanipulator
task space hypergraph in Fig. 8. Transition hyperarc paths are planned for each
transition hyperarc in the task space hypergraph. The start and end configurations
of the transition paths are represented as colored vertices within the correspond-
ing task space elements. Move paths are planned between transition start/end
configurations within the same task space element and represented as (colored)
edges to encode movement within that task space element. Note that there are no
internal edges within the yellow object task space element as it is not actuated.

to reduce the size of the task space. For example, a common
choice in MRMP is to only consider task space elements that
contain a single robot. A multimanipulator planning algorithm
may consider only task space elements that contain only robots
and objects involved in direct manipulation with each other (e.g.,
a robot grasping an object). Transitions then occur between sets
of task space elements.

Similarly, constraints on what transitions are feasible between
sets of task space elements can restrict arbitrary transitions
between configuration spaces or constraint sets for a set of
moveable bodies. These constraints along with the composition
rules are packaged as allowed transitionsA and implicitly define
the set of obtainable vertices and hyperarcs within a task space
hypergraph.

Algorithm 2 defines how the task space hypergraph HT can
be constructed from the initial task space element Tinit and
the set of allowed transitions A. The direction of expansion is
implemented in the ExpandHypergraph function and may
be configured to a breadth first search (BFS), depth first search
(DFS), or heuristic-guided search. An earlyQuit option may
be included if a single task solution is sufficient.

C. Motion Hypergraph

The task space hypergraph considers only task space condi-
tions and does not consider the motion feasibility of transitions.
We build a motion hypergraphHM = (VM, EM) to expand the
task space information in the task space hypergraph to include
motion feasibility. This motion hypergraph is a sampled repre-
sentation of possible transitions through the MR-TMP space.

1) Motion Vertices: The vertices in the task space hypergraph
contain task space constraints, but they do not have any DOF
values to represent an explicit configuration within the con-
figuration space Wi of the corresponding task space element
Ti. A motion vertex vM =< vT , q >∈ VM contains both a task
space hypergraph vertex vT ∈ VT (corresponding to a task space
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Algorithm 2: Task Space Hypergraph Construction.

1: Procedure BUILDHT (Tinit, Allowed Transitions A,
earlyQuit)

2: D(Tinit)← Decompose(Tinit, A)
3: HT = (VT , ET )← Initialize(D(Tinit), A)
4: while true do
5: Vnew, Enew ← ExpandHypergraph(HT , A)
6: if Enew == ∅ then
7: break
8: VT ← VT ∪ Vnew; ET ← ET ∪ Enew
9: if earlyQuit and ContainsSolution(HT )

then
10: break
11: returnHT

element Ti ∈ T ) and an explicit configuration q ∈ Wi. As such,
each vT ∈ VT may map to many motion vertices in VM.

2) Motion Hyperarcs: There are three kinds of hyperarcs in
the motion hypergraph: composition, transition, and move.

A composition hyperarc simply indicates that the planning
space composition has changed.

A transition hyperarc Etrans
M encodes a set of feasible motions

for performing a task space transition. The tail and head sets of
Etrans
M may lie in different task space elements (or combinations

of task space elements).
A move hyperarc Emove

M encodes a motion path between two
motion vertices within the same task space element. The tail
and head sets each contains only a single vertex, vtailM and
vheadM , respectively, and each has the same corresponding task
space vertex vtailM .vT = vheadM .vT . They do not correspond to a
transition in the task space hypergraph.

Each motion hyperarc EM =< Tail, Head, ET , π > con-
sists of the standard tail and head vertex sets, in addition to
a corresponding task space hyperarc ET ∈ ET , and a path π
from the motion vertices vM ∈ EM.Tail to the motion vertices
vM ∈ EM.Head. The task space hyperarc ET = NULL for mo-
tion hyperarcs. The path for composition and transition motion
hyperarcs Ecomp

M .π or Etrans
M .π must contain a configuration

valid in both the constrained configuration spaces produced by
combining all task space elements in the tail set EM.Tail and
the head set EM.Head. The path should be valid in the tail set
Cspace before the switch and valid in the head set Cspace after.
In the case of composition hyperarcs, the path is often a single
configuration.

3) Composition Hyperarc Planning: A motion composition
hyperarcEcomp

M ∈ EM captures the composition change encoded
in the task space composition hyperarc E

comp
T = Ecomp

M .ET ∈
ET . As the constraints do not change (outside the relaxation of
collision avoidance between moveable bodies in different task
space elements), Ecomp

M .π can be any path in the constrained
Cspace induced by the combination of the elements in the tail (or
head) set of Ecomp

T ∈ ET . These paths may be a single configu-
ration, which may be sampled, or encode a longer motion. Paths
longer than a single configuration can be planned in the same
manner as move hyperarcs operating in the combination of task
space elements in the tail (or head) set of Ecomp

T ∈ ET .

The end points of the path are decomposed along the task
space elements present in the tail and head vertices in the task
space hyperarc Ecomp

M .ET . These comprise the tail and head sets
of Ecomp

M and are included in VM. Ecomp
M is included in EM,

encoding a feasible path for performing the composition change.
4) Transition Hyperarc Planning: Generating transition hy-

perarcs often requires a specialized planner to capture feasible
motions transitioning from the constraints of one set of task
space elements to another. For example, pick, place, and handoff
transitions can be computed using an inverse kinematics (IK)-
based planner.

The Etrans
M .π plan can consist of a single configuration or a

path. The start and end points of the path are decomposed along
the task space elements present in the tail and head vertices
in the task space hyperarc Etrans

M .ET in the same manner as
the composition hyperarcs. The tail and head sets of Etrans

M are
included in VM. Etrans

M is included in EM, encoding a feasible
path for performing a task space transition.

5) Move Hyperarc Planning: Move hyperarcs encode mo-
tion feasibility within task space element configuration spaces
Wmove between the start and end points of transition hyperarcs.
While any motion planner may be used to generate the path
Emove
M .π between a pair of motion vertices vi and vj , within the

same task space elements vi.vT = vj .vT , we chose to utilize
a sampling-based approach. Within a particular task space el-
ement’s configuration space Wmove, we grow a roadmap and
connect the start and end points of transition hyperarcs within
Wmove. Paths between these transition start and end points are
found by querying the roadmap. Each Emove

M ∈ EM, thus, en-
codes motion feasibility between planned transitions in and out
of a particular task substate.

6) Start and Goal: The initial configuration of the system
q ∈ Winit can be decomposed into a set of motion vertices
following the initial task state decomposition D(T init, A),
where A is the set of allowed transitions. These motion start
vertices can be connected to transition start points via move
hyperarc planning. Goal constraints can be directly sampled
to create motion goal vertices. These can also be connected to
transition end points via move hyperarc planning.

A virtual source vertex vsourceM along with a virtual hyperarc
EM =< {vsourceM }, {all start vertices}, NULL, ∅ > connecting
vsourceM to the set of start vertices, is used to capture the system
start state. If multiple decompositions of the start state are
included, then each complete set of start vertices would form
the head of a hyperarc originating from the virtual start vertex.

A virtual target vertex vtargetM along with virtual hy-
perarcs of the form EM =< {satisfying set of vertices},
{vtargetM }, NULL, ∅ > connecting unique sets of satisfying mo-
tion vertices to vsourceM , is used to capture the necessary condi-
tions to complete the task.

7) Construction: The construction of the motion hypergraph
HM (see Algorithm 3) begins by initializing HM with the
virtual source and target vertices vsourceM and v

target
M (line 3).

The initial set of motion vertices Vinit is computed by decom-
posing the initial configuration qinit according to the decompo-
sition provided inD(Tinit) (line 4). These are added toHM and
connected to vsourceM (lines 5 and 6). The same process is repeated
for all valid goal configurations provided in Qgoal, connecting
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them to v
target
M (lines 7–10). A vertex map Mv tracks all motion

instances of task space vertices (lines 11 and 13).
The main loop iterates first sampling transitions (and compo-

sitions), and then moves until the hypergraph contains a solution
(line 14). Transitions are sampled by iterating over all task space
hyperarcs ET ∈ ET (line 17), and, for some desired number of
samples, calling the transition planner to find a feasible path to
perform the transition (line 18).

Motion composition hyperarcs may also be sampled here,
but due to the number of possibilities, it is often best to lazily
discover the need for changing compositions. Section IV-D5
discusses this as a means of resolving interpath conflicts.

The start and end points of successful transitions (or com-
positions) are added as motion vertices to the hypergraph, and
the transition (or compositions) path as a whole is added as a
hyperarc (lines 24 and 25). The vertex map is updated with the
new vertices on line 27.

Move hyperarcs are computed by iterating over all of the
vertices in the task space hypergraph vT ∈ VT and attempting to
connect motion vertices from the same task vertex (lines 29 and
30). A Candidates function on line 31 allows for a heuristic
selection of which vertices to attempt to connect (the default
is all other vM ∈Mv[vT ]). On line 32, the move planner Pmove

attempts to compute a feasible motion plan between the two
motion vertices in the corresponding subconfiguration space.
Successful motion plans are saved as move hyperarcs on line 38.

The singleShot option may be used if only the task space
hyperarcs for a specific solution are provided. This indicates that
any failure to sample a hyperarc will prevent a solution from
being contained withinHM, and lines 20 and 34 allow for early
termination upon failure. If all hyperarc samples are successful,
then the singleShot options allow for early return of motion
hypergraph without mandating that it contain a solution (line 39).

D. Transition-Extended Hypergraph

Because both transition and composition hyperarcs in the
motion hypergraph HM move in and out of different space
compositions, planning directly overHM can result in a move-
able body existing in multiple states simultaneously. In order to
query a valid task plan, we must consider a transition-extended
search space, which we represent with a transition-extended
hypergraphHTE = (VTE , ETE) (see Fig. 10).

1) Transition-Extended Vertices: Each vertex vTE =<
vM,Πvsource

TE ,vTE > ∈ VTE is defined by a motion vertex
vM ∈ VM and a transition history Πvsource

TE ,vTE .
HTE has a virtual source vertex vsourceTE =<

vsourceM ,Πsource
vTE

, vsourceTE > which contains a trivial transition
history. The transition history of every other vertex
vTE ∈ VTE/{vsourceTE } consists of all of the moves and transitions
taken to reach vTE from vsourceTE . This corresponds to a hyperpath
Πvsource

TE ,vTE inHTE from vsourceTE to vTE. As such, each vertex vTE
has a single incoming hyperarc as this incoming hyperarc is a
part of its transition history.

A transition history Πvsource
TE ,vTE is valid if every vertex vTE ∈

Πvsource
TE ,vTE contains at most one outgoing hyperarc. This indi-

cates that the moveable bodies at a particular configuration are

Algorithm 3: Motion Hypergraph Construction.
1: Procedure BUILDHM(Task space hypergraph
HT = (VT , ET ), composition planner P , transition
planner Ptrans, move planner Pmove, initial task state
decomposition D(Tinit), initial configuration qinit,
goal task state decomposition D(Tgoal), goal
configurations Qgoal, singleShot)

2: Initialize motion hypergraph with start and goal
configurations

3: HM ← (VM, EM) = ({vsourceM , vtargetM }, ∅)
4: Vinit ← DecomposeCfg(qinit, D(Tinit))
5: VM ← VM ∪ Vinit
6: EM ← EM ∪ {< {vsourceM },Vinit, NULL, ∅ >}
7: for all qgoal ∈ Qgoal do
8: Vgoal ← DecomposeCfg(qgoal, D(Tgoal))
9: VM ← VM ∪ Vgoal

10: EM ← EM ∪ {Vgoal, < {vtargetM }, NULL, ∅ >}
11: vertex map Mv ← ∅
12: for all vM ∈ VM do
13: Mv[vM.vT ]←Mv[vM.vT ] ∪ {vM}
14: while does not ContainsSolution(HM) do
15: Sample transitions (and compositions)
16: for all ET ∈ ET do
17: for all desired number of samples do
18: EM ← Ptrans(ET ) (or Pcomp(ET ))
19: if EM == ∅ then
20: if singleShot then
21: returnHM
22: else
23: continue
24: VM ← VM ∪ EM.Tail ∪ EM.Head
25: EM ← EM ∪ {EM}
26: for all vM ∈ EM.Tail ∪ EM.Head do
27: Mv[vM.vT ]←Mv[vM.vT ] ∪ {vM}
28: Sample moves
29: for all vT ∈ VT do
30: for all vg,i ∈Mv[vT ] do
31: for all vg,j ∈ Candidates(vg,i,Mv[vT ]) do
32: EM ← Pmove(vg,i, vg,j)
33: if EM == ∅ then
34: if singleShot then
35: returnHM
36: else
37: continue
38: EM ← EM ∪ {EM}
39: if singleShot then
40: returnHM
41: returnHM

denoted by the vertices in the tail set of a hyperarc transition
to at most one additional configuration at a time. Multiple
outgoing hyperarcs from a single transition-extended vertex vTE
indicate that the moveable bodies corresponding to vTE perform
simultaneous motions and exist in more than one place at once.
This is an invalid transition history.
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Fig. 10. Both figures (a and b) consider a transition-extended version of the
multimanipulator space depicted in the task space hypergraph (see Fig. 8) and
motion hypergraph (see Fig. 9) where robot 2 can now reach the object’s starting
position and there may be more robots and objects involved outside the vertices
and hyperarcs depicted. The colors of the vertices correspond to the previous
hypergraphs (yellow-object, red-robot 1, and blue-robot 2). In either figure,
we consider the transition history for the tail set of the light gray hyperarc.
(a) Depicts a valid transition history where no vertex has more than one outgoing
hyperarc. (b) Depicts an invalid transition history. The conflict in the transition
history is in the dotted red box. By including the pair of outgoing hyperarcs of
the yellow object vertex in the same transition history, the object must exist in
two conflicting states at once. (a) Valid history. (b) Invalid history.

In addition to ensuring that each moveable body performs at
most one motion at once, the transition history also encodes the
time each transition or move is expected to occur and the “last
known position” for each moveable body according to the set of
transitions and moves in the transition history.

2) Transition-Extended Hyperarcs: Each hyperarc ETE =<
Tail, Head, EM > corresponds to either a composition, tran-
sition, or move hyperarc EM ∈ EM. The head set consists of
vertices, which map to the motion vertices in the motion head set
of EM. The tail set consists of the union of vertices, which map
to the motion tail set of EM and a set of scheduling constraint
vertices.

A set of transition-extended vertices can form a tail set if the
union of their transition histories is valid. This is necessary for
the head set vertices of ETE to have valid transition histories.

3) Goal Vertices: Any transition-extended vertex vTE such
that vTE.vM == vtargetM is considered a valid goal vertex. As
each vTE ∈ VTE contains a valid and unique transition history,
the transition history of the goal vertex corresponds to a unique
optimistic schedule of compositions, transitions, and moves to
complete the task. This schedule is optimistic as, while motions
are valid within their own subconfiguration spaces, they are not
guaranteed to be collision free with respect to the paths of other
moveable bodies occurring simultaneously. This requires the
use of the conflict resolution stage (discussed in Section IV-E),
which seeks to adjust individual motion plans to resolve con-
flicts.

4) Scheduling Constraints: Some motion conflicts will not
be resolvable by the conflict resolution layer. This occurs when
the path or position of one moveable body cannot occur simul-
taneously with the path or position of another moveable body.
These are motion-based scheduling conflicts.

Scheduling conflicts can occur either between a pair of motion
vertices and a pair of motion hyperarcs, or a vertex and a
hyperarc. Vertex–vertex conflicts indicate that once one vertex
has been reached, the other cannot be reached until the first one
has been left. This occurs when the configurations for the two
motion vertices are in collision.

Hyperarc–hyperarc conflicts indicate that the corresponding
paths cannot occur simultaneously, and one must be concluded
before the other can begin. This occurs when the motions within
separate subconfiguration spaces are found to be incompatible
with each other.

Vertex–hyperarc conflicts indicate that the configuration of a
motion vertex completely impedes the path of the hyperarc. For
example, this may occur if a stationary object is blocking the
motion of robot.

The conflict resolution stage (see Section IV-E) may discover
these scheduling conflicts and pass the information back to
the representation layers as a scheduling constraint associated
with a motion vertex or hyperarc. Scheduling constraints indi-
cate that the associated motion vertex/hyperarc pair cannot be
included in the hyperpath simultaneously. Transition histories
must satisfy the scheduling constraints of the included motion
vertices/hyperarcs to be valid. Scheduling vertices can be in-
cluded in a tail set for a transition-extended hyperarc ETE to
augment the transition history with additional transitions and
motions that satisfy the scheduling constraint. In the case of an
object blocking the path of a robot, this encodes that the object
must not be at the blocking location during the execution of that
path of the robot.

5) Identifying Composition Hyperarcs: Outside of introduc-
ing scheduling constraints, some motion conflicts can be ad-
dressed by adding a composition hyperarc to the task space
hypergraph HT that provides access to the composite space of
the conflicting sets of moveable bodies. This requires the update
of the motion and transition-extended hypergraph layers as well
to fully encode the composite shift and allow the conflict to be
resolved in the composite space. This resembles the approach
taken by M* [28] upon discovering conflicts.

6) Implicit Construction and Search: As the purpose of this
graph is to find an optimistic schedule in the form of a goal
vertex, and HTE is potentially infinitely large, we search an
implicit representation ofHTE and construct the necessary ver-
tices and hyperarcs as a part of the search process. This search, as
described in Algorithm 4, is an adaptation of the optimal shortest
hyperpath query algorithm, as presented in [4], to account for the
implicit representation and leverage the particular constraints of
the transition-extended hypergraph (e.g., each vertex has only a
single incoming hyperarc).

The search starts by initializing the source vertex vsourceTE and
the explicit HTE on lines 2 and 3 along with the vertex weight
function W , the frontier queue Q, and the parent map from
vertices to incoming hyperarcs Pv on lines 4 and 5.

A set of partial hyperarcs U is initialized on line 6. Due to
the implicit (and potentially infinite) nature of the hypergraph,
the forward star (FS), or set of all outgoing hyperarcs, of a
transition-extended vertex vte cannot always be computed. This
occurs when the forward star of the corresponding motion vertex
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Algorithm 4: Transition-Extended Hypergraph Search.
1: Procedure SearchHTEMotion hypergraphHM,

vsourceM , vtargetM
2: vsourceTE ←< vsourceM ,Πvsource

TE ,vsource
TE

>
3: HTE ← ({vsourceTE }, ∅)
4: Weight function W (vsourceTE )← 0
5: Queue Q← {vsourceTE }; Parent map Pv ← ∅
6: Partial hyperarcs U ← ∅
7: while Q 
= ∅ do
8: u← Q.pop()
9: for all ETE ∈ FScomplete(u, U) do

10: ETE ← ETE ∪ {ETE}
11: f ← maxvTE∈ETE.TailW (vTE)
12: for all y ∈ ETE.Head do
13: VTE ← VTE ∪ {y}
14: Q← Q ∪ {y}
15: W (y)← f + w(ETE) �w(ETE) is the weight of

ETE

16: Pv[y] = ETE

17: if y.vM == v
target
M then

18: return y
19: U ← UpdatePartialHyperarcs(y)
20: return NULL

FS(vte.vM) includes hyperarcs with tail sets containing more
than one vertex as any set of transition extensions of the motion
tail set with nonconflicting transition histories may form a tail
set for a transition-extended hyperarc. Instead, we track partial
hyperarcs in U , where we dynamically construct valid tail sets
as new transition-extended vertices are discovered.

When the search attempts to expand from a vertex u, all
completed hyperarcs in the forward star of u are expanded
(line 9). This maintains the search properties in the original
hyperpath query in [27], which only expands a hyperarc once
all of the vertices in its tail set have been expanded. The set
of partial (and completed) hyperarcs U is updated when a new
vertex is added to the frontier queue (line 19).

For each complete hyperarc ETE in the forward star of y, the
search adds ETE to the hypergraph on line 10 and computes
the maximum weight of the vertices in the tail set on line 11.
In the context of planning, this naturally captures any waiting
time required by the moveable bodies in one tail vertex on
the moveable bodies in the other tail vertices to arrive before
beginning the transition.

Next, each of the vertices in the head set of ETE is added to
the hypergraph and the frontier queue (lines 13 and 14) before
setting the weight and parentage of each vertex (lines 15 and 16).
Finally, a check is performed to see if any of the head set vertices
correspond to the motion target vertex vtargetM , indicating that
an optimistic schedule has been found (line 17). If the queue
is empty, and no schedule has been found, a NULL solution
is returned.

E. Conflict Resolution

The optimistic scheduled produced by searchingHTE corre-
sponds to scheduled motions, which are only guaranteed to be
feasible within their own configuration spaces. Thus, there is no

guarantee that these motions are conflict free with each other.
We address this with a conflict resolution layer.

Each motion within the schedule is defined by a start and
a goal for the corresponding moveable bodies along with any
precedence constraints defined by the schedule. This resembles
a scheduled variant of the MRMP problem, as discussed in
Section II-B. As such, scheduled variations of MRMP methods
may be adapted to perform conflict resolution with different
theoretical properties.

For fast, single-shot planning, priority-based decoupled meth-
ods, such as priority-based search [29], can provide quick solu-
tions. When an optimal search over the current representation is
needed, hybrid methods, such as CBS-MP [11], can be adapted
to account for scheduling constraints in a manner similar to the
grid-world scheduled CBS variant in [4].

F. Method Variants

The various components of the DaSH method can be con-
figured to balance a tradeoff in planning times versus solution
quality. On the two extremes, we have the option to return
the first valid solution found or to continue searching until an
asymptotically optimal solution is found.

1) Faster Planning Times Versus Higher Solution
Quality: The high-level algorithm described in Algorithm 1
can be configured to return the first valid solution by setting
earlyTermination=True from the beginning. Alterna-
tively, permanently leaving earlyTermination=False
will allow the algorithm to converge on the optimal solution so
long as the ExpandRepresentation function maintains
asymptotically optimal properties and the loop in lines 3–11
returns the optimal solution for the current representation.
The algorithm can be configured with anytime properties if
earlyTermination is instead a function, which signals
that time is up and the current best solution is returned.

2) Representation Construction: As the representation con-
struction is a hierarchical construction process, the design
choices at each level can impact the properties of the algo-
rithm as a whole. The task space hypergraph HT construction
can be modified by changing the behavior of the functions in
Algorithm 2. If earlyQuit=True, then choosing a greedy
ExpandHypergraph function can lead to a small, concise
HT containing the minimum number of task space elements and
transitions to move from the start element to the goal element.
This can be beneficial when the task space is very expansive,
and there is not a set of allowable transitions that can keep the
size down. Alternatively, if the problem does have an effective
set of allowable transitions, then a BFS style ExpandHyper-
graph function and earlyQuit=False can quickly build a
completeHT . So long as ExpandHypergraph is configured
to continue expandingHT everytime is called untilHT contains
a complete representation of T (i.e., all admissible task space
elements can be formed by combining elements represented
in HT ), probabilistic completeness, asymptotic optimality, and
anytime properties are still obtainable.

The size of theHT directly affects the effort of Algorithm 3 as
each hyperarc in the HT may be sampled many times (lines 18
and 32). The theoretical properties of the motion hypergraph
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HM are determined by the HT Algorithm 3 given and the
transition, composition, and move planners. If the move planner
is probabilistically complete and asymptotically optimal within
each of the task space elements (e.g., PRM* [30]), then the
transition and composition planners continue to sample new
hyperarcs, and the motion hypergraph will converge to the
optimal set of motions for the givenHT .

3) Next-Best Search: Asymptotic optimally requires an op-
timal query of the current representation in lines 5–11 of
Algorithm 1. We use the next-best search algorithm (see Al-
gorithm 5) to iteratively build and validate task plans until it
converges to the optimal solution for the current representation.

Each task plan represents an optimistic schedule of indepen-
dent motions not guaranteed to be collision free of each other.
The cost of this optimistic schedule serves as a lower bound
for the solution cost as the solution cost can only increase
from resolving conflicts. The algorithm requires each succes-
sive call to FindTaskPlan (line 6) to return the next-best
task plan in terms of cost (i.e., each optimistic schedule cost
must be at least as much as the previous schedule cost). This
allows each successive iteration to update the lower bound of
the solution.

Each optimistic schedule must be converted into a valid solu-
tion by resolving any potential conflicts. The ConflictRes-
olution function (line 8) uses the roadmaps in the motion
hypergraph and the schedule to construct a set of collision-free
paths following the scheduled generated by FindTaskPlan.
If the cost of this valid solution is lower than the previous
upper bound, we update the upper bound to reflect this so-
lution and save it as the best solution (lines 9 and 10). If
no valid solution can be found in the current representation,
the cost is treated as infinite, and the upper bound is un-
changed. Schedules are saved in S (line 11) and given to the
task planner to ensure that it returns the next-best solution
(line 6).

The algorithm iterates until an optimistic schedule is produced
with a cost greater than the current upper bound (line 5). At this
point, the current best solution is determined to be the optimal
solution with respect to the current representation, and this
solution is returned (line 12). This iteration follows the strategy
proposed by Brown et al. [4]. If no valid plan is found, it returns to
the representation construction and expands the representation.

4) Task Planning: In order for Algorithm 5 to return
the optimal solution for the current representation, the
FindTaskPlan function must always return the next-best
solution. This requires it to return the optimal solution the first
time it is called, and each solution cost serves as a lower bound
for the next call. Fortunately, the transition-extended hypergraph
HTE makes this simple, as each vertex contains the unique
transition history to itself, a satisfying goal vertex represents a
unique solution. If Algorithm 4 finds an optimal solution, then
the next-best solution can be obtained by removing the previous
solution from HTE and calling the search again. This also
reduces the cost of computing subsequent solutions if the search
frontier is maintained. We will discuss two optimal variants of
Algorithm 4 and a greedy alternative.

Algorithm 5: Next-Best Search.
1: Procedure NBSMotion hypergraph HM
2: (S∗, T ∗)← (∅,∞) �Best solution
3: T ← 0 �best lower bound
4: S ← ∅ �Set of discovered solutions
5: while T ∗ > T do
6: (P, T )← FindTaskPlan(HM,S)
7: if T ∗ > T then
8: (S, T )← ConflictResolution(HM, P)
9: if T < T ∗ then

10: (S∗, T ∗)← (S, T )
11: S ← S ∪ {P}
12: return S∗

Dijkstra-like Hyperpath Query: The first option resembles a
Dijkstra shortest path search overHTE and follows Algorithm 4
explicitly. The frontier queue Q is ordered on the weight W (y)
of vertices (line 15).

A*-like Hyperpath Query: An A*-like search can be config-
ured by adding a lower bound cost-to-go heuristic value to each
vertex vTE in the frontier queue Q and ordering the queue by
the sum of the weight and cost-to-go heuristic. We consider a
cost-to-go heuristic derived from path (not hyperpath) distances,
as described in Section II-E2, on the motion hypergraph from
vTE.vM to v

target
M . This path must only consist of vertices for

which the corresponding moveable bodies vTE.vM.vT .Ti.Bi are
specified in the goal constraints of the problem. The heuristic
value of vertices without goal specified moveable bodies is 0, and
they cannot be included in the heuristic path. In object rearrange-
ment problems, this is equivalent to computing the path distance
for an object to its goal state from a given motion hypergraph ver-
tex while ignoring any robot-only vertices and hyperarcs. This
provides a lower bound by assuming that all other dependencies
happen in parallel before this goal constraint is satisfied (e.g.,
all robots are immediately available to perform actions and all
other objects have already reached their goal positions).

Greedy Hyperpath Query: If the optimality is not required
and a fast solution is preferred, then a greedy search can be used
in place of Algorithm 4. The simplest greedy option iteratively
constructs a valid transition history one hyperarc at a time. This
approach benefits from a heuristic for choosing the next hyperarc
to add, and it may be forced to backtrack if the choices made do
not allow for a feasible solution to be reached. If this search is
complete, then probabilistic completeness may be maintained if
it is supported by the other choices.

5) Conflict Resolution: The variants of conflict resolution
are discussed in Section IV-E. An optimal option, such as the
scheduled variant of CBS-MP [11], is required for Algorithm 5
to return an optimal solution. Otherwise, the fastest option may
be used, although the completeness affects the probabilistic
completeness property of the configuration.

Section VIII evaluates an asymptotically optimal configura-
tion using NBS with the A* variant of Algorithm 4 and a fast,
greedy approach, which uses the greedy hypergraph query to
generate a single task plan for which it attempts to resolve
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conflicts before expanding the representation. Both methods use
the scheduled variant of CBS-MP [11] to resolve conflicts.

V. APPLICATION TO MRMP

We examine the application of the DaSH method to the multi-
robot motion planning problem (MRMP-DaSH) to illustrate the
concepts discussed in the previous sections and show how the
proposed framework generalizes many existing MRMP meth-
ods. We first formally define the problem: Given a set of robots
B and an environment, find continuous collision-free paths for
each robot ri ∈ B from a given start si to a given goal gi in the
environment.

The task space TMRMP consists of elements Ti = (Bi,Wi, Ci),
where Bi ⊆ B, Wi is the configuration space for Bi, and Ci

constrains each bj ∈ Bi to not be in collision with any obstacle or
any bk ∈ Bk, bk 
= bj . There is a single admissible task space el-
ement T ∗ = {Tcomplete = (BCOMPLETE,WCOMPLETE, CCOMPLETE)},
where BCOMPLETE = B and CCOMPLETE contain all collision avoid-
ance constraints.

The hypergraph representation layers defined in
Section IV-B–D can be configured by adjusting the allowed
transitions A to create the different planning spaces commonly
considered by MRMP methods.

A. Composite Representation

MRMP-DaSH can be reduced to composite MRMP methods,
such as the work of [15] and [16], by considering allowed tran-
sitions A, which constrain the task space hypergraph HTMRMP =
(VT , ET ) such that a vertex vi ∈ VT iff vi.Ti = TCOMPLETE. This
results in a HTMRMP with a single vertex and no hyperarcs. The
motion hypergraphHM = (VM, EM) contains a pair of vertices,
one for the start and one for the goal configuration inWi, along
with the virtual source and target vertices. A single move hyper-
arc Emove

M connects the start and goal configurations, and virtual
hyperarcs connect these to the virtual source and target vertices.
As there are no meaningful transitions, the transition-extended
hypergraph mirrors the motion hypergraph. The computation
of the path Emove

M .π provides a solution to the MRMP problem
directly in the composite configuration space; thus, no conflict
resolution stage is required.

B. Decoupled Representation

MRMP-DaSH can be reduced to MRMP methods that utilize
decoupled representations, such as the work of [11] and [15],
by considering allowed transitions A, which constrains HTMRMP
such that a vertex vi ∈ VT iff |vi.Ti.Bi| < |B| and ET = ∅. It
is often further constrained such that each task space element
represented in VT contains only a single robot. The correspond-
ing motion hypergraph contains a start and goal vertex within
each task space element represented by a vertex in VT and a
move hyperarc between them (see Fig. 11). Additional hyperarcs
connect the set of valid start and goal vertices to the virtual source
and target vertices. Fig. 11 depicts HM for a fully decoupled
representation.

Fig. 11. Motion hypergraph for a decoupled representation of the MRMP
problem contains a single hyperarc within each individual robot subspace in
addition to the source and target hyperarcs. The hyperarc within the task space
element for each individual robot is an abstraction of the path across the
corresponding roadmap within that element. All robots must be included in
the tail set of the target hyperarc to capture the requirement that all robots reach
their goal.

There are no meaningful transitions inHM, so the transition-
extended hypergraph HTE resembles HM. The independent
paths in the move hyperarcs are not guaranteed to be colli-
sion free with each other, so the conflict resolution stage is
required to produce a solution valid in TCOMPLETE. The algo-
rithm design choices for constructing the independent paths
and resolving conflicts produce different MRMP algorithms
with varying properties. For example, using asymptotically op-
timal sampling-based approaches to iteratively construct and
improve the individual paths can enable hybrid search methods,
such as CBS-MP [11], to provide asymptotically optimal solu-
tions. Alternatively, priority-based methods, such as decoupled
PRM [15] or PBS [29], applied to roadmaps will provide fast,
suboptimal solutions. The properties of the grid-world MAPF
algorithms [29], [31] depend on the resolution of their grid
representation.

C. Hybrid Representation

Hybrid representations for MRMP-DaSH include composi-
tion hyperarcs inHTMRMP , allowing the subsequent representation
layers to transition between Cspace compositions. This requires a
decision to be made on when to change compositions. Methods,
such as M* [28], change compositions as a means of resolving
conflicts between decoupled paths. This results in an iterative
construction and search approach, which lazily adds compo-
sition hyperarcs to the motion hypergraph HM around conflict
locations. The transition-extended hypergraphHTE ensures that
all solutions contain a single continuous path for each robot in
the problem.

VI. APPLICATION TO MULTIMANIPULATOR REARRANGEMENT

We consider multimanipulator rearrangement problems to
illustrate our proposed approach and its benefits. This appli-
cation is referred to as MM-DaSH. We first define the problem:
Given a set of moveable bodies B = R∪O consisting of robot
manipulators R and manipulable objects O, an action space
expressed as allowed transitions A, and an environment, the
planner must find a sequence of actions and motions for the
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robots to take such that the manipulable objects move from a
start pose pstart to a satisfactory goal pose pgoal.

The task space Tmanip with elements Ti = (Bi,Wi, Ci),
where Bi contains some set of robots and objects,Wi denotes
their Cspace, andCi may constrain an object oj ∈ Bi to be at rest
on a stable surface or in a stable grasp of some robot rk ∈ Bi

in addition to the standard collision avoidance constraints. The
set of admissible task space elements T ∗ consists exclusively of
elements Ti, where Bi = B and Ci must constrain every object
to either a stable surface or grasp in additional to the full set of
collision avoidance constraints. The constraint set CCOMPLETE in
Tcomplete contains all allowed grasps and stable surfaces for the
objects and robots in B.

A. Composite Representation

MM-DaSH can be configured to existing multi-robot rear-
rangement methods, such as the work of Shome and Bekris [10],
by considering a set of allowable transitionsA, which constrains
the task space hypergraph HT = (VT , ET ) such that a vertex
vi ∈ VT iff vi.Ti ∈ T ∗. As all task space elements represented
as vertices in VT contain all r, o ∈ B, there are no composi-
tion hyperarcs in HT . The action space available to the robots
determines the transition hyperarcs Etrans

T included in HT .
A hyperarc Etrans

T ∈ ET may include a set of simultaneous,
independent actions transitioning between task space elements
in T ∗, so long as each robot and object is only involved in single
action (e.g., Robot 1 picks object A, while Robot 2 places object
B). As all these transition hyperarcs have a head and tail set of
size one,HT is a graph.

The motion hypergraph encodes paths for allowed transitions
and motions within individual task space elements between tran-
sitions. The transition-extended hypergraph encodes possible
sequences of simultaneous actions and motions for the system
to take. As any path computed through a sequence of task space
elements always considers all moveable bodies and collision
constraints, no conflict resolution is needed.

Existing rearrangement methods, such as SMART [10], can
be modeled in this framework and often perform simultaneous
construction and search. They build an oracle for planning move
hyperarcs Emove

M ∈ HM.EM (e.g., precompute PRM* for each
robot) and then rely on heuristics to decide which hyperarc
Etrans
T to attempt to sample and add to the motion hypergraph
HM. They then consider taking the equivalent hyperarcs in
the transition-extended hypergraph HTE until HTE contains a
hyperpath corresponding to a sequence of moves and transitions
that solve the task.

B. Decoupled Representation

MM-DaSH can be configured to consider smaller task space
elements with allowable transitions A, which constrain HT =
(VT ,HT ) such that vi ∈ VT iff the Bi ∈ vi.Ti cannot be parti-
tioned without relaxing a constraint in Ci other than interbody
collision avoidance. For example, grasping constraints result in
task space elements Ti = (Bi,Wi, Ci), Bi = {oj , rk}, where
robot rk is grasping object oj according to a constraint in Ci.

Task space elements with no grasping constraints contain either
only a single object or robot.

A decoupled representation requires that no composition hy-
perarcs exist in HT . Transition hyperarcs must be between sets
of vertices in VT and follow the rules described in Section IV-B.
These correspond to independent actions in the action space
(e.g., pick, place, and handoff), as depicted in Fig. 8.

The variations of representation construction and search,
as presented in Section IV, produce decoupled or hybrid ap-
proaches with varying theoretical properties over this decoupled
task space representation. Hyperpaths in the transition-extended
hypergraphHTE correspond to invalidated solutions in the set of
admissible task space elements, so a conflict resolution stage is
required. Options for this stage are discussed in Section IV-E. We
provide the decision choices for two decoupled representation
options with hybrid search techniques in Section VIII, which are
included in our empirical evaluations.

C. Hybrid Representation

The hybrid representation for MM-DaSH applies the same
modifications to the decoupled representation as in MRMP-
DaSH. Composition hyperarcs are allowed in HT and the sub-
sequent representation layers. The decision remains on where
to include composition changes. Further investigation on this
question is outside the scope of this work.

VII. REPRESENTATION ANALYSIS

Having an explicit representation of the planning space en-
ables an incredibly informed generic heuristic based on the
representation itself. The composite graph-based representa-
tion provides more complete information than the decoupled
hypergraph-based representation; however, in many applica-
tions, the graph representation of the task space derived from
only considering the admissible task space elements is too large
to ever use explicitly. Existing methods, which consider only the
admissible composite elements instead, use heuristics tailored
to their problem to greedily search an implicit representation
of the graph [10]. In contrast, if a hypergraph representation
of decomposed task space elements is small enough to build,
it allows the use of more generic heuristics computed from
the various hypergraph layers, such as the cost-to-go heuristic
discussed in Section IV-F4.

In this section, we compare representing the task space with
the traditional composite graph representation to the proposed
decoupled hypergraph representation for the multimanipulator
problems, as discussed in Section VI. We show that the size of
the proposed representation scales well with the problem size
and, thus, is able to be constructed and used in heuristics.

We consider the pick, place, and handoff action space, and as-
sume that all robots can reach each other to perform handoffs and
all objects to perform pick/place actions. This is an overestimate
as it ignores reachability constraints but serves as an informative
upper bound on the space complexity as a planning method must
reason over reachability before eliminating potential transitions.
Each robot can hold at most one object. Each object can be held
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by at most one robot. For simplicity, we ignore specific grasp
constraints’ parameters or object poses and just consider the
allocation of objects to robots.

A. Graph Representation

We first consider a graph-based composite representation of
the task space. The moveable bodies of a task space element
contain the full set of n robots and m objects.

1) Total Number of Vertices: Let Pmax = min(m,n) be the
maximum number of objects that can be held in a scene with n
robots and m objects. Let p ∈ {0, . . ., Pmax} be the number of
objects currently held in a given task space element’s constraints
Anxm. Then, the number of unique sets of p objects that are held
in a given task space element is

(
m
p

)
. The number of unique sets

of p robots holding those objects in a given task space element
is
(
n
p

)
. Considering all possible assignments of the held objects

to the robots and the different values of p, the total number of
elements S is given as follows:

S(m,n) =

Pmax∑
p=0

(
m

p

)(
n

p

)
p!. (4)

2) Total Number of Edges: We first consider the set of avail-
able place actions. Let l ∈ {0,..., p} be the number of objects
placed in a given transition. Then, the number of unique sets of
objects placed in a given transition is

(
p
l

)
. The total number of

transitions just performing a place action is given by (5), where
1 is subtracted for the case l = 0 and no transition occurs

− 1 +

p∑
l=0

(
p

l

)
. (5)

n− p is the number of free robots in a given task space element.
Hmax = min(p− l, n− p)} denotes the maximum number of
objects handed off in a given transition. Let h ∈ {0, . . ., Hmax}
be the number of objects handed off in a given transition. Then,
the number of unique sets of objects handed off in a given
transition is

(
p−l
h

)
, and the number of unique robots receiving the

handoffs is
(
n−p
h

)
. Considering all possible assignments, the total

number of place and handoff transitions is given by (6), where
1 is subtracted for the case l = 0 and h = 0 and no transition
occurs

− 1 +

p∑
l=0

(
p

l

)Hmax∑
h=0

(
p− l

h

)(
n− p

h

)
h!. (6)

m− p is the number of free objects in a given task space
element. n− p− h denotes the number of robots not holding
an object in an element and not receiving an object via a
handoff in a given transition. Gmax = min(m− p, n− p− h)
is the maximum number of objects picked in a given transition.
Let g ∈ {0, Gmax} be the number of objects picked in a given
transition. Then, the number of unique sets of objects being
picked is

(
m−p
g

)
, and the number of unique sets of robots picking

is
(
n−p−h

g

)
. Considering all possible assignments, the total num-

ber of transitions from a given task space element performing a
set of handoff actions is given by (7), where 1 is subtracted for

the case l = 0, h = 0, and g = 0, and no transition occurs

G(m,n, p, h) = −1 +
Gmax∑
g=0

(
m− p

g

)(
n− p− h

g

)
g!. (7)

Let H be the total number of handoff and grasp action com-
binations possible, given m,n, p, and l, and let L be the total
number of transitions possible consisting of a combination of
place, handoff, and pick actions, given m,n, and p

H(m,n, p, l) =

Hmax∑
h=0

(
p− l

h

)(
n− p

h

)
h!G(m,n, p, h) (8)

L(m,n, p) =

p∑
l=0

(
p

l

)
H(m,n, p, l). (9)

The total number of edges T in the graph is given by the total
number of edges from each of the vertices, as given in the
following equation:

T (m,n) =

Pmax∑
p=0

(
m

p

)(
n

p

)
p!L(m,n, p). (10)

B. Hypergraph Representation

The hypergraph-based representation of the decoupled task
space considers decomposed task space elements containing
every pairing of a robot grasping an object, each robot not
holding an object, and each object not being grasped for a total
of mn+m+ n vertices.

Each pick action is a transition from a robot-only vertex and an
object-only vertex to the vertex for the task space element where
the robot grasps that object. A place action is this transition
in reverse. This results in 2mn transition hyperarcs for all
pick/place actions.

Each handoff action is a transition from a pair of vertices,
where robot 1 is grasping the object and robot 2 is free, to a
pair of vertices, where robot 1 is free and robot 2 is grasping the
object. Each of the mn grasping vertices can be paired with any
of the n− 1 free robot vertices for a total of mn2 −mn handoff
hyperarcs. This results in a total of mn2 +mn hyperarcs to
capture all possible transitions.

C. Comparison

From (4), the graph-based representation maintains linear
growth in the number of vertices when considering either a single
robot or a single object but exhibits exponential growth as soon
there are both multiple robots and multiple objects.

In contrast, in the hypergraph representation, the number of
vertices scales linearly with the number of robots while holding
the number of objects constant, regardless of the number of
objects. The same is true if the number of objects changes and
the number of robots is held constant.

The number of transitions follows a similar trend. If there is
either a single object or a single robot, then the number of tran-
sitions is equal for graph- and hypergraph-based representations
when the other quantity (robots or objects) increases. As soon
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as a second object or a second robot is introduced, the growth of
the number of task space transitions (edges) in the graph-based
representation becomes exponential. In the hypergraph-based
representation, the number of hyperarcs scales quadratically
with the number of robots and linearly with the number of
objects. This follows directly from the total number of hyperarcs,
as discussed in Section VII-B.

Despite containing more information, the exponential growth
in the size of the composite graph-based representation prevents
it from being utilized in planning. The more concise hypergraph-
based representation can be both constructed and leveraged to
inform heuristics that are not problem specific. We present one
instance of this in Section IV-F4, where heuristic values come
from simple paths in the motion hypergraph.

To provide an intuitive visualization of the difference in
representation size, we depict the graph and hypergraph rep-
resentation for two robots and four objects along with a table
showing the immediate size difference in smaller problems (see
Fig. 2).

D. Alternative Problem Spaces

To examine the generality of the DaSH framework, we con-
sider the size of the hypergraph-based representation for alter-
native problem spaces.

1) Two-Robot Grasping: We first consider a problem space
where each object requires two robots to be simultaneously
grasping an object to move it. We assume that each robot
involved in a grasp has a specific role (i.e., robot 1 and robot
2). We maintain the m+ n vertices for each object alone and
each manipulator alone task space element. Instead of the mn
vertices corresponding to task space elements for object–robot
pairs, we havemn2 −mn elements for each permutation of two
robots and one object for a total of mn2 +m+ n vertices in the
task space hypergraph.

In this problem, there are 2mn2 − 2mn pick/place transitions
for every combination of robot pairs and objects. Additionally,
there are mn(n− 1)(n− 2)(n− 3) handoff transitions as each
of them objects can be handed off between every ordered pair of
robots. Thus, the number of transitions in the hypergraph-based
representation still scales linearly with the number of objects
and quartically with the number of robots.

The number of vertices in the task space hypergraph can
be modeled for larger sets of k robots grasping an ob-
ject by considering m n!

(n−k)! task space elements, where k
robots grasp each object with specific roles in the grasp (plus
the isolated robot and object element vertices). Pick/place
transitions are always twice this number for moving in ei-
ther direction. Meanwhile, there are m n!

(n−k)!
(n−k)!

(n−2˜k)! handoff
transitions.

2) Stacking: We consider a problem space where a set of m
objects must be stacked in a particular order and can only be
stacked in that order. Each object can be grasped by at most one
robot at a time. From our original pick, place, and handoff action
space, we add an additional m task space elements correspond-
ing to every partial stack of i ∈ [1,m] objects each of which
corresponds to an additional vertex in the task space hypergraph.
The addition of each of the m objects to the stack may be

done by any of the n robots for an additional mn transition.
Thus, the growth of the representation size maintains the same
asymptotic behavior.

Now, consider instead the stacking problem, where each
object requires two robots to grasp it, as described in
Section VII-D1. We still have the m additional vertices for
each partial stack. Instead of the mn stacking transitions in the
single-robot grasp version, we now have mn(n− 1) stacking
transitions. The asymptotic growth of the representation size
again remains unchanged from the two-robot pick, place, and
handoff rearrangement problem.

3) Supported Stacking: We add an additional constraint to
the stacking problem, where one robot must be supporting
the stack before an object can be added. This adds an ad-
ditional mn vertices corresponding to task space elements,
where each of the n robots is supporting one of the m partial
stacks. Additionally, instead of mn stacking transitions for the
single-robot grasp problem or mn(n− 1) stacking transitions
for the two-robot grasp problem, there are now mn(n− 1) and
mn(n− 1)(n− 2) supported stacking transitions, respectively,
where each stacking action now involves an additional robot
supporting the stack. In either case, this is less than or equal to
the number of handoff transitions in either problem’s task space
hypergraph, leaving the asymptotic growth unchanged.

VIII. EXPERIMENTAL EVALUATION

In our experiments, we demonstrate the improvement in
planning times from using the hypergraph-based representa-
tion for both problems with large numbers of objects and ge-
ometrically constrained manipulation tasks. We evaluate two
decoupled representation configurations of the approach for the
multimanipulator rearrangement problem defined in Section VI,
MM-DaSH and Greedy-MM-DaSH, on a set of physical and
simulated multi-robot manipulation problems, as depicted in
Figs. 1 and 13(a). We compare against SMART [10] as a multi-
manipulator method considering a composite representation for
rearrangement tasks. In all scenarios, the objective is to move
the given objects from their respective start locations to specified
goal locations. Robots can perform pick, place, and handoff
actions. We report the time to return the first solution and the cost
of that solution for each method. Any planning attempt longer
than 104 s is considered to have failed.

A. Methods

We describe the two DaSH configurations and the implemen-
tation of SMART [10].

1) MM-DaSH: We describe the construction, task planning,
and conflict resolution used in both MM-DaSH and Greedy-
MM-DaSH.

Construction—Both variants construct the entire task space
hypergraph HT in the initial representation construction. The
size relative to the number of robots and objects is given in
Section VII.

Each round of representation expansion samples one addi-
tional motion transition for each task space transition. We use
an IK-based sampling method for grasps and handoffs. A small
roadmap is initialized with ten vertices for each task space
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Fig. 12. Each figure shows the search time for every seed. The Y-axis denotes the seconds to compute a plan. The X-axis denotes the number of objects. The
asymptotically optimal version, MM-DaSH, is marked with blue X. The greedy variant, Greedy-MM-DaSH, is marked with green triangles. The composite version,
SMART [10], is marked with red circles. Figures (a) and (b) and (c) and (d) show the results for two-robot and four-robot sorting scenarios, respectively. Figures
(a) and (c) have start locations such that each object must be handed off to reach the goal location. Figures (b) and (d) have random start locations for each object.
(a) Sorting - 2 robots - cross. (b) Sorting - 2 robots - random. (c) Sorting - 4 robots - cross. (d) Sorting - 4 robots - random.

element using PRM*. The move planner uses these roadmaps to
compute the paths included in the move hyperarcs by connecting
the transition path start/end points and querying paths over the
roadmaps. Each round of representation expansion adds ten
additional samples to each roadmap.

Task Planning- MM-DaSH uses NBS and the A*-like hy-
perpath query, as described in Section IV-F4, to find optimal
solutions for the current representation. This can require many
calls to both the task planning and conflict resolution layers.

Greedy-MM-DaSH uses the Greedy hyperpath query, as de-
scribed in Section IV-F4, and expands the representation after a
single attempt at task planning and conflict resolution.

Conflict Resolution—Both methods use the scheduled variant
of CBS-MP [11] to resolve conflicts in the optimistic schedule
produced by the task planning layer.

Solution—Both methods return a solution once the represen-
tation contains one. MM-DaSH will find the optimal solution
for that representation, while Greedy-MM-DaSH will return the
first solution it finds.

2) SMART: We describe the details of our implementation
of SMART [10].

Construction—We first create the object-centric-mode graph
used to guide planning in SMART. We then run PRM* to
create an initial roadmap with 100 vertices for each robot. We
found that initializing each roadmap with 100 vertices led to the

highest success rate when using the dRRT* [24] style MRMP
in later stages of the algorithm, as detailed in [10]. The need for
denser roadmaps than the CBS-MP style motion planning is an
interesting question but is outside the scope of this work.

We modified the implementation of SMART to sample tran-
sition (picks, places, and handoffs) during the construction to
create a fair comparison to the DaSH variants, which also sample
transition in the construction phase. These are connected to the
PRM* generated roadmaps.

Search—The implementation of the search stage follows the
description in the original article [10]. We use the same MAPF
formulation over the object-centric-mode graph as the guiding
heuristic. The goal bias was 0.9. This was experimentally found
to produce the best results. The same dRRT* style motion
planning was used within each mode.

Solution—We return the first valid solution SMART finds.
Both MM-DaSH variants and SMART [10] were imple-

mented in C++ in the Parasol Planning Library. We report the
total search time in Figs. 12 and 13(b) and construction time,
success rate, and solution quality in Table I.

B. Experimental Configuration

We evaluate the methods on a set of rearrangement tasks.
A sorting scenario highlights the ability of the methods to

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 



18 IEEE TRANSACTIONS ON ROBOTICS

TABLE I
DETAILED RESULTS FOR BOTH TWO- AND FOUR-ROBOT SORTING SCENARIOS

plan for increasing numbers of robots and objects. A shelving
scenario demonstrates the ability of the MM-DaSH variants
to account for geometric constraints arising from object
placement. Each method was run with ten random seeds in
each scenario. Experiments were run using a desktop computer
with an Intel Core i9-10900KF CPU at 3.7 GHz, 128 GB of
RAM.

We compute plans for virtual robots in each scenario. All
robots are UR5e manipulators with hand-e grippers. A physical
demonstration of the two-robot sorting scenario can be seen in
the video linked in Fig. 1. SMART was adapted to account for
transition paths to perform task space element switches instead
of single-configuration switches to address the added complexity
of using a two-finger gripper instead of the vacuum style gripper
used in the original SMART experiments.

C. Sorting

To evaluate the ability of the method to efficiently find plans
for large numbers of objects, we consider a scenario which
imitates sorting tasks that may be encountered in warehouses
or factories. A set of objects lies in a common workspace for
a set of robots. Each object belongs to a particular class. The
team of robots must sort the objects from the mixed group in
the common workspace into bins of the corresponding class. In
a full industry application, a computer vision component would
be utilized to identify object classes and poses, but we focus
only on the planning portion here and assume knowledge of

this information. Our objects are simple cubes, and the class is
denoted by the color in Fig. 1.

The initial configuration of the objects is randomly generated
in the common workspace. The target configuration of the ob-
jects is randomly generated within the bin for the appropriate
class. The comparison of our approach to SMART [10] is given
in Fig. 12 and Table I.

1) Two-Robot Scenario: In this scenario, we consider two
manipulators which must sort the blocks by color (see Fig. 1).
We evaluate the runtime and solution quality of the methods as
the number of objects increases.

2) Four-Robot Scenario: In this virtual scenario, a group of
four robots again must sort an increasing number of blocks.
This is an expansion of the two-robot scenario with the robots
arranged in a square. There are four classes of objects, one for
each robot. This evaluates the performance of the method as
the number of robots increases and the impact of the number of
robots has on the performance of the method as the number of
objects increases as well.

3) Analysis: As seen in Fig. 12, the DaSH variants are able to
find plans faster and for a significantly larger number of objects
(20) than the SMART baseline (6). SMART is unable to scale
as the composite space it searches grows too large.

Both DaSH variants are able to efficiently find plans for
smaller numbers of objects, and the heuristic based on the motion
hypergraph effectively informs both variants which action to
take next. MM-DaSH struggles with the task space complexity at
six objects. This occurs when there are many roughly equivalent
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Fig. 13. (a) Robots must move the objects (which start randomly on the table)
to positions on the shelf. The blue objects must be placed directly in front of
the green objects, which requires the green objects to be placed first. (b) This
figure reports the search time for each seed for the shelving scenario. The Y-axis
reports seconds taken to find a solution. The X-axis reports the number of objects
to be stocked. Both methods reported 100% success for the two- and four-object
problems. Greedy reported 100% success for six objects. (a) Shelves - scenario.
(b) Shelves - results.

solution options with incompatible transition histories (e.g.,
robot 1 starting with blocks 1 or 2 when both need to be
handed off to robot 2). Greedy-MM-DaSH alleviates this issue
by building a single transition history and is able to plan for 20
objects for the two-robot scenario and 16 objects for four-robot
scenario. SMART is only able to obtain a 70% success on the
random scenario for two robots, six objects, and a 0% on the
same cross scenario.

MM-DaSH produces lower cost solutions than either method,
although the Greedy-MM-DaSH solution cost is often close (see
Table I). SMART produces much higher cost solutions despite
its much denser representation (using PRM* roadmaps). This
is due to both the requirements that all actions be performed
synchronously and quality of the initial motion paths found using
the dRRT* techniques (initial paths are used, as we consider the
initial solution produced by SMART). In Table I, we can see
that the construction time for SMART is an order of magnitude
greater than the DaSH variants.

The cross scenario presents a harder problem as local deci-
sions for individual objects often conflict with the best global
decision for which the object should be passed across the for-
mation first. This shows up in the hyperpath query stage for
the DaSH variants and in the MAPF heuristic for SMART. The
variance is much higher for MM-DaSH and SMART in the
random scenario, as the more the problem resembles the cross
scenario, the higher the difficulty and increased planning time.
Greedy-MM-DaSH does not exhibit this as it greedily selects
an object to pass all the way to its goal in either scenario,

ignoring the best global decisions. In either scenario, most of
the MM-DaSH and Greedy-MM-DaSH variances come from
the conflict resolution stage and are a product of the sampled
transitions and roadmaps available to resolve conflicts.

D. Shelving

To evaluate the ability of the method to account for geomet-
rically constrained manipulation problems, we consider a shelf
stocking scenario with two rows of objects [see Fig. 13(a)]. In
this scenario, two manipulators must stock a shelf where the
target configuration of objects on the shelf is random placements
of object pairs such that one object lies immediately behind the
other on the shelf, completely blocked by the front object. This
forces the method to reason over the collision-based scheduling
constraints and determine the correct order to place the objects
on the shelf. The initial configuration of the objects is randomly
generated on the same flat surface the robots rest on. The results
are shown in Fig. 13(b).

1) Analysis: The planning times, as shown in Fig. 13(b), il-
lustrate the ability of both DaSH variants to efficiently find plans
for this geometrically constrained problem, placing each green
object before placing its coupled blue object [see Fig. 13(b)].
Greedy successfully finds plans for more objects than MM-
DaSH. They do take longer than the sorting scenarios, as it often
takes multiple iterations for the motion planning layer to identify
each of the motion-based scheduling constraints.

IX. CONCLUSION

In this article, we presented the DaSH method, a general task
and motion planning framework, which considers varying levels
of coupled and decoupled spaces. The framework enabled the
tailoring of the space coupling to the coordination required for
different problem stages rather than a static tradeoff between
coordination and planning speed. We provided a decomposi-
tion of task and motion planning spaces into subspaces and
presented a hypergraph representation capable of representing
the decomposed space. We presented a method for leveraging
this hypergraph representation to solve task and motion planning
problems.

We illustrated the application of the general approach to
the MRMP-DaSH and the MM-DaSH, provided the analysis
of the representation for the multimanipulator problem, and
empirically evaluated our approach against a state-of-the-art
rearrangement planning method, where we showed significant
improvement in planning. This improvement in planning was in
large part due to the ability to construct the hypergraph-based
representation. This is not the case for all task and motion
planning problems. Future work should consider how to reason
over implicit representations of the decomposed space.
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