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Representation-Optimal Multi-Robot Motion
Planning Using Conflict-Based Search

Irving Solis , James Motes , Read Sandström , and Nancy M. Amato

Abstract—Multi-Agent Motion Planning (MAMP) is the prob-
lem of computing feasible paths for a set of agents each with indi-
vidual start and goal states within a continuous state space. Existing
approaches can be split into coupled methods which provide opti-
mal solutions but struggle with scalability or decoupled methods
which provide scalable solutions but offer no optimality guaran-
tees. Recent work has explored hybrid approaches that leverage
the advantages of both coupled and decoupled approaches in an
easier discrete subproblem, Multi-Agent Pathfinding (MAPF). In
this work, we adapt recent developments in hybrid MAPF to the
continuous domain of MAMP. We demonstrate the scalability of
our method to manage groups of up to 32 agents, demonstrate
the ability to handle up to 8 high-DOF manipulators, and plan
for heterogeneous teams. In all scenarios, our approach plans
significantly faster while providing higher quality solutions.

Index Terms—Path planning for multiple mobile robots or
agents, motion and path planning.

I. INTRODUCTION

IN AUTOMATED manufacturing, high degree-of-freedom
(DOF) manipulators working in tight coordination must

avoid colliding with each other while planning efficient
motions. Heterogenous teams used on construction sites or in
search-and-rescue missions must similarly coordinate collision
free motions. Video games with large multi-agent teams must
also produce feasible plans. These are only a few examples of
the multi-agent motion planning (MAMP) problem.

Given the complexity of MAMP, most of the research re-
lated to multi-agent systems has focused on solving an easier
subproblem, multi-agent pathfinding (MAPF). The pathfinding
problem operates in a discrete state space as opposed to the
continuous space considered in the motion planning problem.
The assumption of shared state representations for all agents
and uniformity of state transition duration often made by MAPF
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methods prevent them from being directly applied to the con-
tinuous space MAMP domain. Thus many real world problems,
such as the high DOF manipulator and heterogenous multi-agent
teams, cannot be solved by discrete MAPF techniques as the
agents depend on a unique world representation. Some MAMP
methods, such as an environment grid-discretization [1], map
their motions to a common environment representation to handle
the disjoint agent’s state-space representation. Unfortunately,
the solution quality of these types of approaches is heavily
dependent upon the environment representation.

There are two standard approaches to MAMP/PF: coupled
and decoupled. Coupled methods can provide optimal solutions
but search over the joint state space. Decoupled methods search
independently over the individual state spaces of each robot but
cannot guarantee completeness or optimality as they explore
individual agent state spaces in isolation before combining
them later. Hybrid approaches try to leverage the benefits of
both approaches.

In this work, we present an efficient and scalable MAMP
solver that generalizes a recent efficient and optimal MAPF
technique, Conflict-Based Search (CBS) [2], to continuous
state spaces. We show our new MAMP method, CBS-MP,
offers a significant improvement over state-of-the-art MAMP
solvers both in terms of planning time and solution quality.
We validate our approach against both standard coupled and
decoupled Probabilistic Roadmap (PRM) variants as well as a
detailed comparison to ECBS-MP, another CBS extension to
solve MAMP problems, specifically state-lattice problems.

The results show that our proposed approach has improved
performance for a variety of scenarios. We show an increased
scalability, planning for up to 32 agents, while the PRM variants
were unable to plan for 16 agents, and ECBS-CT was only able
to handle some 16 agent for some trials. We planned for up to
8 high DOF manipulators over 60 times faster on average than
the fastest PRM variant run. Additionally, we demonstrate the
flexibility of the approach on a heterogeneous problem with
a manipulator, mobile robot, and aerial robot operating in the
same workspace. In addition to significantly improved planning
times, we show lower cost solutions than both PRM variants.
Our contributions are as follows:
� a uniform time discretization process to efficiently extend

CBS to sampling-based motion planning,
� an optimal MAMP method which improves performance

and scalability over existing methods,
� theoretical analysis of the quality of the technique, and
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TABLE I
A BRIEF OVERVIEW OF RELATED METHODS

� experimental validation on mobile, high-dof and heteroge-
neous multi-robot systems.

II. RELATED WORK

In this section, we examine relevant work to the multi-agent
pathfinding and motion planning domains. An overview of the
state-of-the-art is shown in Table I.

There are two problem classes: Multi-Agent Pathfinding
(MAPF) and Multi-Agent Motion Planning (MAMP). MAPF
problems are defined by a set of agents, a graph, and a start
and goal location for each agent. A solution consists of a set of
collision-free paths on the graph, moving each agent from the
start to the goal. Solution quality is traditionally measured by
sum-of-costs (summed cost of all paths) or makespan (maximum
individual path). An optimal solution minimizes the desired
metric. MAMP is the problem of finding a feasible path between
a start and goal for each agent in a continuous state space that is
usually intractable to represent explicitly. This is a superset of the
pathfinding problem that searches over a discretized state space.

Methods can be classified into three categories: coupled,
decoupled, and hybrid. In coupled approaches, all agent paths are
computed in unison. These approaches work in the joint space
of all agent states. They tend to provide stronger guarantees
on feasible paths and minimum cost by exploring the joint
space. However, they have a high computational cost as the
dimensionality of the joint C-space increases with the number
of robots and their degrees of freedom.

computational cost, attention has turned to decoupled
algorithms. Instead of planning all paths in unison, each path
is planned individually. Once all paths are computed, they are
adjusted according to defined priorities to avoid inter-agent
collisions. Decoupled approaches work in single-agent spaces
allowing to rapidly compute feasible paths for problems with a
large number of agents. However, individual agent state spaces
are explored in isolation, and later solutions are combined. This
prevents ensuring completeness and optimality, and there is
often the possibility of failing to find feasible paths on solvable
problems.

Due to the tradeoff between faster computation times and
finding optimal cost solutions, researchers explored new ways

of leveraging the strengths of both coupled and decoupled tech-
niques. These techniques are known as hybrid approaches. The
method we present, CBS-MP, is a hybrid approach to MAMP
problems. This approach leverages the techniques developed in
the MAPF space to create an optimal and scalable solution for
the continuous space MAMP.

A. Multi-Agent Pathfinding

Generally, all MAPF methods can be classified into three
major groups: coupled, decoupled, and hybrid.

1) Coupled Approaches: A simple MAPF solver can be im-
plemented by concatenating all the single agent states into a
joint state and then using a generic search algorithm like A*
to traverse the joint space to get to the joint state solution [3].
Unfortunately,the number of states grows exponentially with
respect to the number of agents. As a result, these approaches
are only practical for a small number of agents.

To improve and speed up the search over the joint space, other
methods attempt to prune the search by using some heuristics
and expand fewer nodes than regular A* [11]–[13]. Alternative
approaches have modeled the multi-agent pathfinding problem
as Integer Linear Programming (ILP) and Boolean Satisfiability
(SAT) problems. In [14], [15] the problem is mapped to a
network-flow and apply ILP algorithms to solve MAPF instances
optimally. However, all these techniques are still susceptible to
increased computational cost as the number of robot increases
or even a few robots with high DOF as they also plan in joint state
spaces.

2) Decoupled Approaches: To achieve group coordination of
multiple robots, decoupled approaches first compute individual
paths over a given graph by using a single-agent pathfinding al-
gorithm such as A* and Djkstra’s, minimizing a multi-robot cost
metric such as makespan or sum-of-costs with respect to traversal
distance or time. Then inter-agent conflicts are resolved. In [16]
collisions are avoided by fixing all agents’ velocities. In [4],
[17]–[20], collisions are avoided by assigning priorities to incre-
mentally compute each agent path, treating higher priority agents
as dynamic obstacles. By partially exploring the joint-space,
decoupled planners are incomplete.

3) Hybrid Approaches: In [7], a hybrid MAPF method, M*,
solves the MAPF problem by initially planning a set of individual
policies in a fully decoupled manner. These policies are then
used to guide a coupled search over the joint state space. When
an inter-agent conflict arises, the coupled search is backtracked
until the last collision-free joint state, and the conflicting agents
are merged into a coupled meta-agent. New collision-free paths
are computed using a coupled planner for the meta-agent. If
all agents are in collision at the same place and time, M* may
become a fully coupled planner as long as the inter-robot conflict
remains unresolved.

CBS [2], produces optimal solutions on a grid world represen-
tation. To ensure completeness, it considers all the possible ways
in which conflicts between individual paths can be resolved.
CBS uses a low-level search to find individual agent paths and a
high-level search to find and resolve conflicts between paths. To
avoid increasing the dimensionality of the search like M*, CBS
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poses constraints to low-level searches to avoid previously de-
tected conflicts. This enables CBS to resolve conflicts for agents
independently and prevents elevating the dimensionality of the
planner. This is the method we extend to the sampling-based
motion planning domain in this letter. CBS and recent variants
are discussed in detail in the following section.

B. Multi-Agent Motion Planning

In motion planning, the state space is the set of all pos-
sible agent configurations known as the configuration space
(Cspace) [21]. A solution to the motion planning problem is
a continuous path in a subset of Cspace called free space
(Cfree) consisting of valid configurations. In response to the
complexity of motion planning [22], sampling-based motion
planners were developed as an efficient means of discovering
valid paths in Cfree. These methods, such as the Probabilistic
Roadmap Method (PRM) [23] attempt to create a roadmap, or
graph, approximating Cfree. Paths are found by querying this
roadmap.

Not much work has been proposed for sampling-based multi-
agent motion planning (MAMP). Much that has been done mod-
ifies or extends two widely used single-agent sampling-based
motion planning algorithms, PRM [23] and RRT [24]. In [9],
[25], PRM is used to solve MAMP instances in both coupled
and decoupled manners. In [10], MRP-IC uses individual PRMs
to solve the MAMP problem incrementally. MRP-IC use single-
agents paths to guide an incremented state-space coupled search
to find the path of the next agent. In [8], [26]–[29] optimizations
and improvements to regular RRT are proposed to enable effi-
cient constructions and rapid explorations of the joint Cspace.
MRdRRT is one the most relevant RRT-based techniques.

Nonetheless, despite the optimal guarantees of composite
planners, the solutions they produce are often much more ex-
pensive than decoupled approaches. This is because they ex-
plore the joint Cspace of the multi-agent team. As the size of
the joint Cspace grows exponentially with the number of robots,
the probability of sampling joint configurations useful relative
to the individual agent paths becomes increasingly low. This
issue can be mitigated by increasing the size of the composite
roadmap. However, this involves increasing the computational
cost and memory usage.

Several ideas of how discrete MAPF techniques can be
adapted to continuous problems, “Relocating Roadmap Nodes”,
“Merging nodes” and “Addressing Node/Node and Node/Edge
interactions” are presented in [30]. However, no experimentation
is provided to validate their applicability.

III. CONFLICT-BASED SEARCH

Conflict-Based Search (CBS) finds optimal solutions for
MAPF problems where the underlying graph is a grid roadmap
which is shared by all agents [2]. The core idea of CBS is to
efficiently explore possible single agent path combinations in
which a MAPF instance can be solved. This is achieved by using
a two-level framework that grows and maintains a set of path
constraints for the various agents. This set is later used for finding
new paths that are consistent with these constraints. A constraint

< ai, v, t > is defined as the vertex v and timestep t at which an
agent ai must not traverse. At the high-level of CBS, individual
paths are checked for conflicts. A conflict < v, t, ai, aj > is
defined as an object representing when both an agent i and agent
j occupy a vertex v at timestep t. In other words, a conflict
represents the location and time when an inter-agent collision oc-
curs. All vertices are one unit distance from their neighbors, and
moving between neighboring vertices constitutes one timestep.
A different type of conflict occurs when two agents located on a
pair of neighboring vertices swap their positions, and then they
collide during their motions. This event is identified as an edge
conflict. An edge conflict then has the form < ai, aj , v1, v2, t >
where ai moves from v1 to v2 while aj moves from v2 to v1)
during the time frame [t, t+ 1]. An edge constraint is defined
as < ai, v1, v2, t >, where agent ai is prohibited of traversing
the edge (v1, v2) at timestep t for not reaching v2 at timestep
t+ 1. Edge conflicts are treated in the same manner as vertex
conflicts. When a conflict is detected, the high-level generates
corresponding path constraints for resolving it. Then, the low
level searches for individual paths that are consistent with the
new constraints.

The high-level search utilizes a data structure called Conflict
Tree (CT). Each node in CT contains a solution, a set of path
constraints for the various agents, and a total cost. The solution
is a set of paths that contains one path per agent. Each path is
consistent with the corresponding constraints obtained from the
set of constraints. The low-level search computes these paths.
The total cost is relative to either sum-of-costs or makespan of
the set of paths.

The CT is searched in a best-first manner, with respect to node
solution cost. This results in optimal solutions. In the beginning,
the root node of CT contains no constraints. Thus, the set of paths
in this node is freely computed. After this, the root node serves
as the basis for growing the CT. This process mainly involves
adding, expanding, and validating new nodes in CT. There are
two essential tasks within this process, Conflict Detection and
Conflict Resolution.

1) Conflict Detection: CT node solutions are evaluated for
path conflicts by the high-level planner. The conflict detection
iterates through all the individual paths and matches the locations
and times traversed by all agents. If no conflict is detected, the
CT node is declared as a goal node.

2) Conflict Resolution: Whenever a conflict c is detected,
the high-level planner generates a path constraint for each agent
involved. A constraint for an agent ai consists of the time t of
the collision, and the vertex v. A child CT node is generated for
each constraint. Each child node additionally copies all of the
constraints of the parent node.

The low-level planner computes individual paths that are
consistent with current constraint sets. In MAPF, all agents use
the same graph, and a constraint can be easily mapped to an
“invalid” state to be avoided by the low-level search.

The high-level search continues to evaluate the next lowest
cost unexplored node in CT. The search stops upon finding the
first conflict free or goal node. As the tree generates all possible
plans and nodes cost at least as much as their parent, the first
goal node discovered holds an optimal solution.
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3) Suboptimal Variant: In ECBS [6], best-first searches of
both high- and low-level planners are aided by a focal search.
Secondary heuristics enable pruning and exploration of a subset
of both high-level and low-level nodes. ECBS solutions have
cost no more than ω-times optimal solution.

4) Continuous Variant: In [1], a recent ECBS extension to
the continuous-time field is proposed. This technique, ECBS-
CT, aims to solve the MAMP problem in the state lattice world
representation, where the workspace is discretized into a grid,
and then grid cells are connected using a predefined set of single-
agent motion primitives. ECBS-CT produces optimal and sub-
optimal solutions and is considered a state-of-the-art MAMP
solver. It leverages using a state-lattice representation to map the
agents’ motions to a common workspace discretization. Thus, all
the agents’ motions can be incorporated into the same state-space
representation.

Conflicts occur when two or more agents sweep a grid cell at
the same timestep. Conflicts are resolved by posting a constraint
< c, t > on the cell c a timestep t where the conflict occurred.
This constraint prohibits the corresponding agent from being at
cell c at timestep t.

Relying on the workspace grid discretization can lead to unfa-
vorable situations for non-state lattice approaches like PRMs and
RRTs. Mapping motions to grid cells leads to a dependency on
grid cell size. Large grid cells can lead to false positive conflicts
as two agents may be at the same cell and timestep, but no
real collision occurs. This results in a loss of precision, thus
optimality and completeness of ECBS-CT dependent upon grid
cell size choice. Additionally, extra conflicts results in more CT
nodes increasing the planning time. On the other hand, when the
size of grid cells is small, mapping agent motions to grid cells
may significantly increase the computational cost and memory
usage.

IV. CONFLICT-BASED SEARCH IN SAMPLING-BASED

MULTI-AGENT MOTION PLANNING

We first formally define the sampling-based MAMP problem.
Next, we introduce our method CBS-MP, the CBS extension
to sampling-based MAMP problems. Finally, we provide its
theoretical properties.

A. Problem formulation

This subsection formally defines the Multi-agent Motion
Planning problem and what constitutes a solution for it.

Definition 1: A multi-agent motion planning (MAMP) prob-
lem consists of an environmentE, set of agentsA, and initial and
goal conditions for each agent ai ∈ A. Let the free configuration
space for agent ai be denoted as Ci. Then for each agent ai ∈ A
the initial state is a configuration si ∈ Ci and the goal condition
is reaching a set Gi ⊂ Ci.

Definition 2: Let R be a set of roadmaps ri for each agent
ai ∈ A. We assume each ri ∈ R is sufficiently representative
for containing a valid path from si to Gi.

Definition 3: Let P be a set of paths ρi(t) : [0, tfinal]→ Ci

for each agent ai ∈ A. We say that P is a solution to an MAMP

Algorithm 1: CBS −MP .
Input: Environment E, Set of agents A, Set of queries
Q. Output: Set of motion plans P

Initial motion plans P ← ∅; Sampling iterations S ← 1
for each agent ai ∈ A do

Sample E to build a roadmap ri ∈ R
pi ← MotionPlan(qi, ri, ∅)
P ← P ∪ {pi}

end for
while true do

Constraint Set C ← ∅; Node root← (P,C)
Conflict Tree CT ← {root}; Node count N ← 0;
while CT �= ∅ do

if ShouldResample(N,S) then
break

end if
n = CT .GetMinNode(); N ← N + 1
x = FindConflict(n.P)
if x == ∅ then

return n.P
else

Obtain new constraints ci, cj from x
Node n1 ← (n.P, n.C ∪ {ci}
Node n2 ← (n.P, n.C ∪ {cj})
n1.P ← n1.P ∪ {MotionPlan(qi, ri, ni.C)}
n2.P ← n2.P ∪ {MotionPlan(qj , rj , nj .C)}
CT ← CT ∪ {n1, n2}
continue

end if
end while
Sample E to expand roadmaps r ∈ R; S ← S + 1

end while
return P ← ∅

problem if for all times t ∈ [0, tfinal] there are no collisions
between the robot configurations ρi(t).

Definition 4: Let P be a solution to an MAMP problem, P
is said to be representation-optimal with respect to R and a cost
metric C(R,P ) = C∗ if there is no set of valid paths P ′ in R
with lower cost C(R,P ′) < C∗.

Definition 5: A representation-optimal team solution is opti-
mal with respect to the current representation of each individual
agent’s state space.

Many MAPF methods claim to provide optimal solutions.
This optimality is with respect to their input state representa-
tion or roadmap which is assumed to be perfect. While some
sampling-based motion planning methods provide asymptotic
optimality, this never achieves true optimality in any real appli-
cation. In this work, we focus on providing a team path which
is optimal with respect to the current representation of each
individual agent’s state space.

B. Adapting CBS to Sampling-Based Motion Planning

In general planning problems, heterogeneous agents operate
in distinct continuous spaces. Our approach, CBS-MP, adapts
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the MAPF CBS method, which assumes a shared discrete rep-
resentation, to this more general scenario.

Initially, we sample individual roadmaps for each agent using
standard PRM techniques. Each roadmap is grown until it con-
tains a valid path for the corresponding agent. Vertices represent
valid configurations, and edges represent valid transitions be-
tween a pair of vertices. Each edge is validated by a local planner
that discretizes it into intermediate points of fine enough gran-
ularity to validate the corresponding continuous motion [31].
Edges can also be represented as a chain of configurations known
as intermediates, and a path can be represented as a longer chain
of intermediates. A path intermediate is a configuration and can
be either be a roadmap vertex or an edge intermediate.

Then we use the two-level framework of CBS to query the
roadmaps. While the high- and low-level framework remains the
same, MAPF CBS cannot directly handle the PRM discretiza-
tion. This is due to disjoint individual state representations and
the non-uniformity of edge length and duration. These issues
manifest themselves during the conflict detection and resolution
stages of CBS.

1) Conflict Detection: Since agent motions are represented
by edges, they may have different distances and duration. Then,
individual paths will also exhibit the same notion. Thus, before
checking the paths for conflicts, they have to be put in the same
time context. To achieve this, we introduce the uniform time
discretization process. Which essentially consists of discretizing
all the individual paths into uniform time resolution segments.
These segments can be of different lengths in different agents’
roadmaps, but each segment takes the same time duration for
the corresponding agent to traverse. This allows the sequence
of segment endpoints along each agent’s path to be synchro-
nized. The endpoints can also be seen as path intermediates that
correspond to configurations for the associated robots [31]. The
path intermediates are checked for conflict with standard motion
panning collision detection methods. When a conflict is detected,
it consists of a pair of intermediates pi, pj and a timestep t,
c =< t, pi, pj >. Regardless of the type of conflicts we found,
vertex conflicts or edge conflicts, our method provides a simpler
and more efficient way to find and treat conflicts equally without
distinction.

2) Conflict Resolution: In CBS and most of the variations, a
constraint inherits directly from the conflict found and represent
specific states that must be avoided during the low-level search.
In our approach, a constraint < ai, t, pj > consists of an agent
ai, timestep t, and the other agent’s conflicting configuration pj .
Motion plans for an individual agent ai satisfying constraints of
this form must avoid collision with the constraint configuration
pj at the corresponding timestep t. Constraints are then mapped
to the edges of agent ai’s roadmap that physically collide against
pj . This means a constraint will then encompass a set of edges
that must not be traversed at timestep t, not just a single state
to avoid during the low-level search. Doing this involves per-
forming a large number of collision detection calls. To alleviate
this issue, we lazily evaluate edges against the constraints while
searching the roadmap by first checking if the constraint timestep
overlaps the edge, and if so, we perform the collision detection

against the other agent configuration. Otherwise we proceed with
the search.

3) Roadmap Expansion: In MAMP problems, it is possible
to verify individual roadmaps contain valid single-agent solu-
tions in a decoupled manner, but it is unknown if the current set
of roadmaps contain a valid team solution without exploring the
composite space. In CBS-MP, the composite space is explored
by expanding the conflict tree.

A deep exploration of the tree (and thus a longer planning
time) may be caused by either a problem that requires very
tight coordination between agents or by insufficient roadmaps.
A choice has to be made to either let the query keep expanding
the CT or to quit and expand the roadmaps before restarting the
query. As either option may be correct for solving the problem,
we define a probability function

p = 1−XαN
S (1)

to define the likelihood of expanding the roadmaps at any given
point in the exploration of the CT. The equation is designed
to increase the probability of quitting the query to expand the
roadmaps as the number of CT nodes N increases. Additionally,
as the number of times S the method has quit to resample
increases, the probability of quitting decreases, making a deeper
exploration of the CT more likely. The parameters X and α
are user-defined constants and allow the function to be biased
towards or away from additional roadmap expansion. Setting
X=1 will force the query to search the entire CT without
expanding the roadmaps.

C. Theoretical Properties

We will show that the CBS-Query reduces to CBS with a
different conflict resolution mechanism. We assume that X = 1
in equation 1, so the entire CT is explored.

Lemma 1. Validity: If the CBS-MP query finds a solution, it
will be collision-free.

Proof: CBS-MP maps the agents’ heterogeneous representa-
tions to a common representation with uniform time discretiza-
tion. For any common representation where conflicts can be
detected, the inverse map can be used to assign the conflict to
the associated state in the agents’ individual representations.
These are the generalized requirements for conflict resolution in
CBS, and any produced solution will be free of conflicts. �

Lemma 2. Completeness: If a solution exists in the set of
roadmaps R, then the CBS-MP query will find it.

Proof: In the worst case the CBS-MP query will explore all
possible paths inR. On discovery of the first valid set of pathsP ,
no conflicts will be detected by collision checking with uniform
time discretization, and P will be identified as a solution. �

Lemma 3. Optimality: If a representation-optimal path exists
in R, then CBS-MP query will find it in finite time.

Proof: The individual agent paths are generated with Dijk-
stra’s algorithm on a state space representation with strictly
non-negative weights, which represent motion time. The indi-
vidual costs will thus increase monotonically on each replan
and are admissible. For any admissible group cost metric, the
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CBS-MP query explores group paths in best-first cost order. A
discovered solution will therefore have the best possible cost of
those encoded by R. By the completeness lemma, we will find
such a path in finite time if it exists. �

Theorem 1: By lemmas 1,2,3, the CBS-MP query reduces to
CBS with a different conflict resolution mechanism. It thus is
complete, and provides a representation-optimal solution.

We now discuss the implications the properties of the CBS-
MP query has on the full motion planner. The value of X in
equation 1 lies within (0,1).

Lemma 4: If a solution exists, we will find roadmaps that
encode it eventually.

Proof: As the CT is expanded infinitely, the probability of
expanding the roadmaps goes to 1. Thus the CT will either
find a solution (in which R must contain a solution), or the
roadmaps will be expanded. Due to probabilistic completeness
of the decoupled PRM used to generate the individual roadmaps
in CBS-MP, the set of roadmaps R will eventually contain all
possible paths. �

Lemma 5: If a solution exists, we will eventually find the
representation-optimal set of paths for a set of roadmaps R.

Proof: Assume a solution exists and that it will be the N th

CT node evaluated for the current set of roadmaps R. If the
CT is explored to the N th node, then by Theorem 1, the query
will return the representation-optimal path for the current rep-
resentation. As the number of roadmap expansions S increases,
the probability of further roadmap expansion goes to 0 and the
probability of exploring the CT to the solution node goes to
1. Thus we will eventually reach the CT node containing the
representation-optimal solution. �

Theorem 2: The full planner is probabilistically complete and
representation-optimal.

Proof: As any possible solution will be found by Lemma 4,
and the query will return the representation-optimal path for the
current roadmaps by Lemma 5, the full planner, CBS-MP, is
probabilistically complete and representation-optimal. �

V. VALIDATION

We designed three different experiments to evaluate scal-
ability, performance on high-DOF multi-robot systems, and
performance on heterogeneous systems respectively. To test
scalability, we plan for large teams of mobile robots in a crowded
environment. Our method shows improved performance over
existing approaches. It is the only one capable of consistently
scaling to teams of 32 mobile robots. In the second experiment,
we consider teams of 10-DOF manipulator robots of increasing
number in close proximity. It is the only method that solved all
trials for 8 manipulator robots while keeping low planning times
and solution costs. In the last experiment, CBS-MP exhibits a
better performance in coordinating a heterogeneous system. It is
the only method that solved for the 6 robot team while producing
lower planning times and sparser roadmaps for the 3 robot team.

We evaluate our method against the canonical coupled and
decoupled PRM as well as ECBS-CT. Decoupled PRM was
implemented as a dynamic-obstacle-based approach and com-
putes individual agent paths incrementally. As the performance

Fig. 1. (a) Individual roadmaps and paths are computed separately. (b) Paths
are discretized into uniform motion time segments, enabling inter-agent collision
detection. (c,d) Conflicts are mapped back to the corresponding edges, then new
paths can be computed.

Fig. 2. (a) The agents move from bottom to top and left to right. The paths
for each agent are shown in the various colors. (b) A crane occupies the central
region while a ground-based and aerial robot must navigate in the same space.

of ECBS-CT is dependent upon the choice of grid cell size, we
experimentally determine the best choice for each scenario. All
methods are given 1000s seconds to plan at which the attempt
is considered a failure.

A. Scenario I

Scenario I evaluates the scalability with respect to the number
of agents in scenarios prone to high numbers of conflicts. In an
open environment, half of the robots move from left to right and
half go from bottom to top ( Fig. 2(a)).

In addition to analyzing the scalability of the four methods,
this scenario demonstrates the performance of our method when
its CT grows significantly. Using simple robots inside a free
environment minimizes extraneous factors that may affect the
performance of the planners. We proportionally increased the
size of the environment with the number of robots. This allows
us to have the same density per robot.

CBS-MP exhibits improved scalability over Composite PRM,
Decoupled PRM, and ECBS-CT (Fig. 3(a)). For small agent
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Fig. 3. Running time results: These results show the running time of all scenarios. (a) CBS-MP shows faster times and is the only method that solved problems
with 32 robots. (b) CBS-MP shows faster running times and is the only method that solved the problem with eight robots in all trials. (c) CBS-MP shows faster
running times and is the only method that solved all the trials.

TABLE II
THESE ARE THE RESULTS FOR THE MOBILE ROBOT SCALABILITY SCENARIOS.

DATA IS OMITTED FOR METHODS THAT WERE UNABLE TO COMPLETE ANY

SUCCESSFUL TRIALS IN THE ALLOTTED TIME FOR A PARTICULAR SCENARIO

teams, the Composite PRM has low planning times, taking
roughly three times as long as CBS-MP and planning faster
than Decoupled PRM. For eight agents, the coupled approach
becomes drastically more expensive as the state space grows too
large. Despite the optimal guarantees of the composite approach,
the solutions are often much more expensive than the other two
methods. This is due to Composite PRM sampling the joint
Cspace . The probability of sampling joint configurations that are
useful relative the individual agent paths becomes increasingly
low as the number of robots increase.

Neither Decoupled PRM or Composite PRM is able to solve
in the allotted time for 16 or 32 agents.

Decoupled PRM often produces higher quality plans than
CBS-MP. This is expected as CBS-MP often finds solutions
with sparser roadmaps as shown by the average roadmap size
(Table II). Decoupled PRM continues to expand the roadmaps
until it finds a solution as instead of resolving conflicts within the
existing roadmap like CBS-MP. As CBS-MP is representation-
optimal, it will always produce a plan at least as good as
Decoupled PRM on the same roadmap.

ECBS-CT performs similarly to Decoupled PRM up to 8
agents. It is able to solve some seeds with 16 agents before
timing out but failed in all 32 agent seeds. The cost of mapping
configurations to the grid cells as the roadmaps grow outweighs
the advantage of using the CBS framework. CBS-MP was run

Fig. 4. The set of manipulators starts in a convoluted configuration requiring
tightly coupled maneuvering to reach the goal configuration.

on 64 robot teams as well, though the CT grew too large and
overflowed the memory.

B. Scenario II

This experiment shows planning performance on multiple
high-DOF robots in a shared space. Several robotic arms start
in a confined initial position where each arm is nearly in contact
with the rest (Fig. 4). CBS-MP performs well in this problem
even with eight robots (Fig. 3(b)). Due to its greedy-priority
nature, DecoupledPRM always picks the shortest path for one
of the manipulators, which usually goes through the contested
middle space. This decreases the probability that the others will
find a path because the majority of paths require their distal
joints to use parts of the middle space. As the number of robots
increases, so does the congestion in the middle. This prevents it
from finding solutions where CBS-MP can select paths where
all agents avoid each other while sharing the middle volume
(Table III).

ECBS-CT took significantly longer to plan in all the manip-
ulator experiments. In order to properly map the motions of the
manipulators, the grid cell size is smaller relative the robot than
the disc robots used in Scenario I resulting in increased cost
mapping the configurations in robot paths to the swept cells in
the grid discretization.

C. Scenario III

We evaluate our algorithm’s ability to plan for heterogeneous
multi-robot teams. A heterogeneous team, composed of aerial,
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TABLE III
THESE ARE THE RESULTS FOR THE HIGH DOF MANIPULATOR SCENARIOS.

DATA IS OMITTED FOR METHODS THAT WERE UNABLE TO COMPLETE ANY

SUCCESSFUL TRIALS IN THE ALLOTTED TIME FOR A PARTICULAR SCENARIO

TABLE IV
THESE ARE THE RESULTS FOR THE HETEROGENEOUS SYSTEM SCENARIOS.
DATA IS OMITTED FOR METHODS THAT WERE UNABLE TO COMPLETE ANY

SUCCESSFUL TRIALS IN THE ALLOTTED TIME FOR A PARTICULAR SCENARIO

ground-based, and crane-like robots, must coordinate their mo-
tions in a constrained environment (Fig. 2(b)).

CBS-MP, Decoupled PRM, and ECBS-CT solved the 3 robot
heterogenous problem within the 1000 seconds. CBS-MP again
showed improved performance (Fig. 3(c)) and solved all tri-
als, while Decoupled PRM and ECBS-CT were successful on
20% and 65% respectively (Table IV). CBS-MP was the only
method with any success on the 6 robot problem (69%). This
demonstrates the effectiveness of the CBS-MP approach and
the uniform-time discretization of roadmaps for finding and
resolving conflicts in heterogeneous systems.

VI. CONCLUSIONS AND FUTURE WORK

We present CBS-MP, an extension of CBS to sampling-based
motion planning.

We validate our work in different scenarios to show the
strengths of our method to deal with sets of numerous agents,
high-DOF agents, and heterogeneous agent teams. This work
offers several interesting directions for future work. Within the
presented framework, the motions considered can be extended
to incorporate more interesting robot dynamics. Additionally,
while the current framework replans paths at the global level,
we are looking replanning at the local level as well.
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