Group Behaviors
Related Projects:         

This work focuses on the design if efficient techniques for simulating group behaviors. We investigate how agents can work cooperatively to perform tasks, plan paths in dynamic environments, or influence another group of agents to locations in an environment.



Evacuation Planning

One application of our work is evacuation planning. By being able to simulate agents that are evacuating an area, we can study the effects of things such as the number and placement of exits, how losing exits affects evacuation routes and times, or how evacuation times vary depending on the number, type and placement of barriers and directing agents available to control the evacuating agents.






Pursuit-Evasion in Realistic Environments

Pursuit-and-evasion are commonly studied behaviors. One group of agents, the pursuers, attempts to find and capture another group of agents, the evaders. The evaders attempt to remain undetected and once detected, attempt to escape and hide from the pursuers. We look at aspects of pursuit-evasion which involve studying searching techniques, pursuit strategies and evasion heuristics.






Shepharding Behaviors

Shepherding behaviors are one class of flocking behaviors in which one or more external agents (called shepherds) attempt to control the motion of another group of agents (called the flock) by exerting repulsive forces from shepherds to the flock. Shepherding behaviors can be found in various forms in nature. For example, herding, covering, patrolling and collecting are common types of shepherding behaviors. In this work, we investigate ways to simulate these types of behaviors.







Related Publications

Toward Realistic Pursuit-Evasion Using a Roadmap-Based Approach, Samuel Rodriguez, Jory Denny, Juan Burgos, Aditya Mahadevan, Kasra Manavi, Luke Murray, Anton Kodochygov, Takis Zourntos, and Nancy M. Amato, IEEE International Conference on Robotics and Automation, Shanghai, China, May 2011. DOI: 10.1109/ICRA.2011.5980467
Keywords: Group Behavior, Multi-Agent, Sampling-Based Motion Planning
Links : [Published]

BibTex

@inproceedings{rodriguez2011toward,
title={Toward realistic pursuit-evasion using a roadmap-based approach},
author={Rodriguez, Samuel and Denny, Jory and Burgos, Juan and Mahadevan, Aditya and Manavi, Kasra and Murray, Luke and Kodochygov, Anton and Zourntos, Takis and Amato, Nancy M},
booktitle={2011 IEEE International Conference on Robotics and Automation},
pages={1738--1745},
year={2011},
organization={IEEE}
}


Abstract

In this work, we describe an approach for modeling and simulating group behaviors for pursuit-evasion that uses a graph-based representation of the environment and integrates multi-agent simulation with roadmap-based path planning. Our approach can be applied to more realistic scenarios than are typically studied in most previous work, including agents moving in 3D environments such as terrains, multi-story buildings, and dynamic environments. We also support more realistic three-dimensional visibility computations that allow evading agents to hide in crowds or behind hills. We demonstrate the utility of this approach on mobile robots and in simulation for a variety of scenarios including pursuit-evasion and tag on terrains, in multi-level buildings, and in crowds.


Utilizing Roadmaps in Evacuation Planning, Samuel Rodriguez, Nancy M. Amato, The International Journal of Virtual Reality, Vol: 10, Issue: 1, Jan 2011. DOI: https://doi.org/10.20870/IJVR.2011.10.1.2804
Keywords: Motion Planning
Links : [Published]

BibTex

@article{rodriguez2011utilizing,
title={Utilizing roadmaps in evacuation planning},
author={Rodriguez, Samuel and Amato, Nancy M},
journal={International Journal of Virtual Reality},
volume={10},
number={1},
pages={67--73},
year={2011}
}


Abstract

In this paper we describe utilization of roadmaps in a general evacuation planning system for complex 3D environments. The problem consists of heterogeneous groups of agents whose behaviors and properties affect usage of the environment when creating evacuation plans. This planning system includes behaviors for those agents evacuating and directors that may be guiding the agents to improve evacuation. One aspect we focus on is modeling different forms of direction and communication between agents.


Roadmap-Based Pursuit-Evasion in 3D Structures, Samuel Rodriguez, Jory Denny, Aditya Mahadevan, Jeremy Vu, Juan Burgos, Takis Zourntos, and Nancy M. Amato, International Conference on Computer Animation and Social Agents, Jan 2011.
Keywords: Motion Planning
Links : [Published]

BibTex

@inproceedings{rodriguez2011roadmap,
title={Roadmap-based pursuit-evasion in 3d structures},
author={Rodriguez, Samuel and Denny, Jory and Mahadevan, Aditya and Vu, Jeremy and Burgos, Juan and Zourntos, Takis and Amato, Nancy M},
booktitle={24th Intern. Conf. on Computer Animation and Social Agents (CASA)},
year={2011},
organization={Citeseer}
}


Abstract

We present an approach to the pursuit-evasion problem which is applicable to complex, multi-level environments. Studying each aspect of this problem in 3D structured environments is a distinct extension over many previous approaches. We also utilize our roadmap-based approach to multi-agent behavior when tracking agents of interest. Results are presented in three multi-level environments to highlight the search, pursuit and evasion components of the problem.


Toward Simulating Realistic Pursuit-Evasion Using a Roadmap-Based Approach, amuel Rodriguez, Jory Denny, Takis Zourntos, Nancy M. Amato, International Conference on Motion in Games, pp. 82-93, Utrecht, Netherlands, Nov 2010. DOI: https://doi.org/10.1007/978-3-642-16958-8_9
Keywords: Motion Planning
Links : [Published]

BibTex

@inproceedings{rodriguez2010toward,
title={Toward simulating realistic pursuit-evasion using a roadmap-based approach},
author={Rodriguez, Samuel and Denny, Jory and Zourntos, Takis and Amato, Nancy M},
booktitle={International Conference on Motion in Games},
pages={82--93},
year={2010},
organization={Springer}
}


Abstract

In this work, we describe an approach for modeling and simulating group behaviors for pursuit-evasion that uses a graph-based representation of the environment and integrates multi-agent simulation with roadmap-based path planning. We demonstrate the utility of this approach for a variety of scenarios including pursuit-evasion on terrains, in multi-level buildings, and in crowds.


Behavior-Based Evacuation Planning, Samuel Rodriguez, Nancy M. Amato, IEEE International Conference on Robotics and Automation, May 2010. DOI: 10.1109/ROBOT.2010.5509502
Keywords: Group Behavior, Multi-Agent, Sampling-Based Motion Planning
Links : [Published]

BibTex

@inproceedings{rodriguez2010behavior,
title={Behavior-based evacuation planning},
author={Rodriguez, Samuel and Amato, Nancy M},
booktitle={2010 IEEE International Conference on Robotics and Automation},
pages={350--355},
year={2010},
organization={IEEE}
}


Abstract

In this work, we present a formulation of an evacuation planning problem that is inspired by motion planning and describe an integrated behavioral agent-based and roadmap-based motion planning approach to solve it. Our formulation allows users to test the effect on evacuation of a number of different environmental factors. One of our main focuses is to provide a mechanism to investigate how the interaction between agents influences the resulting evacuation plans. Specifically, we explore how various types of control provided by a set of directing agents effects the overall evacuation planning strategies of the evacuating agents.


Shepherding Behaviors, Jyh-Ming Lien, O. Burchan Bayazit, Ross T. Sowell, Samuel Rodriguez, Nancy M. Amato, In Proc. IEEE Int. Conf. Robot. Autom. (ICRA), Vol: 4, pp. 4159-4164, New Orleans, Louisiana, USA, Apr 2004. DOI: 10.1109/ROBOT.2004.1308924
Keywords: Group Behavior, Multi-Agent, Sampling-Based Motion Planning
Links : [Published]

BibTex

@INPROCEEDINGS{1308924,
author={ {Jyh-Ming Lien} and O. B. {Bayazit} and R. T. {Sowell} and S. {Rodriguez} and N. M. {Amato}},
booktitle={IEEE International Conference on Robotics and Automation, 2004. Proceedings. ICRA '04. 2004}, title={Shepherding behaviors},
year={2004},
volume={4},
number={},
pages={4159-4164 Vol.4},
doi={10.1109/ROBOT.2004.1308924}}


Abstract

Shepherding behaviors are a type of flocking behavior in which outside agents guide or control members of a flock. Shepherding behaviors can be found in various forms in nature. For example, herding, covering, patrolling and collecting are common types of shepherding behaviors. In this work, we investigate ways to simulate these types of behaviors. A shepherd uses roadmaps to steer the flock and to re-group separated flock members. This paper focuses on improving the shepherd's movements to gain better control of the flock's motion and use this improved control to demonstrate a wider variety of shepherding behaviors.


Better Group Behaviors Using Rule-Based Roadmaps, Osman Burçhan Bayazit, Jyh-Ming Lien, Nancy M. Amato, In Proc. Int. Wkshp. on Alg. Found. of Rob. (WAFR), Vol: 7, pp. 95-111, Nice, France, Dec 2002. DOI: 10.1007/978-3-540-45058-0_7
Keywords: Group Behavior, Multi-Agent, Sampling-Based Motion Planning
Links : [Published]

BibTex

@INPROCEEDINGS{10.1007/978-3-540-45058-0_7,
author={Osman Burçhan {Bayazit}, Jyh-Ming {Lien}, Nancy M. {Amato}},
booktitle={In Proc. Int. Wkshp. on Alg. Found. of Rob. (WAFR)},
title={Better Group Behaviors Using Rule-Based Roadmaps},
year={2002}, volume={7}, number={}, pages={95-111},
doi={10.1007/978-3-540-45058-0_7}}


Abstract

While techniques exist for simulating group behaviors, these methods usually only provide simplistic navigation and planning capabilities. In this work, we explore the benefits of integrating roadmap-based path planning methods with flocking techniques. We show how group behaviors such as exploring can be facilitated by using dynamic roadmaps (e.g., modifying edge weights) as an implicit means of communication between flock members. Extending ideas from cognitive modeling, we embed behavior rules in individual flock members and in the roadmap. These behavior rules enable the flock members to modify their actions based on their current location and state. We propose new techniques for three distinct group behaviors: homing, exploring (covering and goal searching) and passing through narrow areas. Animations of these behaviors can be viewed at http://parasol.tamu.edu/dsmft.