Learning-Based Methods
Related Projects:  Robot Task and Motion Planning    Sampling-based Planning    Guided Planning    Learning to Guide Sampling-Based Planners    Spatial Awareness    Learned Abstractions    Interconnect Routing  
Learning-based methods use input data to allow systems to improve their performance and to dynamically adapt. We have applied learning in motion planning to characterize the features of different regions of the space in order to guide the planner. For example, we aim to adapt sampling parameters include those related to the sampling strategies and number of samples, and those related to the connection strategies. We have also characterized the space to identify special regions that are helpful to connect separate areas, or those that usually have higher traffic patterns. We are also exploring learning-based methods to produce task abstractions.



Learning to Guide Sampling-Based Planners


Our group proposed one of the earliest approaches that use learning to guide the sampling-based exploration of the motion planning space. Instead of applying the same planning strategy across the problem, we dynamically adapt sampling parameters such as the region being explored, the planner used, the number of samples to use, and the connection strategies.

Spatial Awareness


Spatial awareness enables robots to resason about the structure of their environment and enables faster and safer planning.

Learned Abstractions


We aim to automatically learn a spase discrete abstraction of the underlying environment that encodes a simplified state and is efficient to solve downstream tasks

Interconnect Routing


We find ways to compute paths for interconnects in complex systems.


Related Publications

Discrete State-Action Abstraction via the Successor Representation, Amnon Attali, Pedro Cisneros-Velarde, Marco Morales, Nancy M. Amato, arXiv preprint, May 2023.
Keywords: Abstraction
Links : [ArXiv]

BibTex

@article{attali2022discrete,
title={Discrete State-Action Abstraction via the Successor Representation},
author={Attali, Amnon and Cisneros-Velarde, Pedro and Morales, Marco and Amato, Nancy M},
journal={arXiv preprint arXiv:2206.03467},
year={2022}
}


Abstract

While the difficulty of reinforcement learning problems is typically related to the complexity of their state spaces, Abstraction proposes that solutions often lie in simpler underlying latent spaces. Prior works have focused on learning either a continuous or dense abstraction, or require a human to provide one. Information-dense representations capture features irrelevant for solving tasks, and continuous spaces can struggle to represent discrete objects. In this work we automatically learn a sparse discrete abstraction of the underlying environment. We do so using a simple end-to-end trainable model based on the successor representation and max-entropy regularization. We describe an algorithm to apply our model, named Discrete State-Action Abstraction (DSAA), which computes an action abstraction in the form of temporally extended actions, i.e., Options, to transition between discrete abstract states. Empirically, we demonstrate the effects of different exploration schemes on our resulting abstraction, and show that it is efficient for solving downstream tasks.


Avoidance Critical Probabilistic Roadmaps for Motion Planning in Dynamic Environments, Felipe Felix Arias, Brian Ichter, Aleksandra Faust, Nancy M. Amato, IEEE International Conference on Robotics and Automation (ICRA), Xien, China, Jun 2021. DOI: Published
Keywords: Machine Learning, Mobile Robots, Spatial Awareness
Links : [Published] [Video]

BibTex

@inproceedings{50155,
title = {Avoidance Critical Probabilistic Roadmaps for Motion Planning in Dynamic Environments},
author = {Felipe Felix Arias and Brian Andrew Ichter and Aleksandra Faust and Nancy M. Amato},
year = {2021},
booktitle = {IEEE International Conference on Robotics and Automation (ICRA)}
}


Abstract

Motion planning among dynamic obstacles is an essential capability towards navigation in the real-world. Sampling-based motion planning algorithms find solutions by approximating the robot’s configuration space through a graph representation, predicting or computing obstacles’ trajectories, and finding feasible paths via a pathfinding algorithm. In this work, we seek to improve the performance of these subproblems by identifying regions critical to dynamic environment navi- gation and leveraging them to construct sparse probabilistic roadmaps. Motion planning and pathfinding algorithms should allow robots to prevent encounters with obstacles, irrespective of their trajectories, by being conscious of spatial context cues such as the location of chokepoints (e.g., doorways). Thus, we propose a self-supervised methodology for learning to identify regions frequently used for obstacle avoidance from local environment features. As an application of this concept, we leverage a neural network to generate hierarchical probabilistic roadmaps termed Avoidance Critical Probabilistic Roadmaps (ACPRM). These roadmaps contain motion structures that enable efficient obstacle avoidance, reduce the search and planning space, and increase a roadmap’s reusability and coverage. ACPRMs are demonstrated to achieve up to five orders of magnitude improvement over grid-sampling in the multi-agent setting and up to ten orders of magnitude over a competitive baseline in the multi-query setting.


Improved Sampling Based Motion Planning Through Local Learning, Chinwe Pamela Ekenna, Improved Sampling Based Motion Planning Through Local Learning, Aug 2016.
Keywords: Machine Learning, Sampling-Based Motion Planning
Links : [Published]

BibTex

@phdthesis{ekenna2016improved,
title={Improved sampling based motion planning through local learning},
author={Ekenna, Chinwe Pamela},
year={2016}
}


Abstract

Every motion made by a moving object is either planned implicitly, e.g., human natural movement from one point to another, or explicitly, e.g., pre-planned information about where a robot should move in a room to effectively avoid colliding with obstacles. Motion planning is a well-studied concept in robotics and it involves moving an object from a start to goal configuration. Motion planning arises in many application domains such as robotics, computer animation (digital actors), intelligent CAD (virtual prototyping and training) and even computational biology (protein folding and drug design). Interestingly, a single class of planners, sampling-based planners have proven effective in all these domains. Probabilistic Roadmap Methods (PRMs) are one type of sampling-based planners that sample robot configurations (nodes) and connect them via viable local paths (edges) to form a roadmap containing representative feasible trajectories. The roadmap is then queried to find solution paths between start and goal configurations. Different PRM strategies perform differently given different input parameters, e.g., workspace environments and robot definitions. Motion planning, however, is computationally hard – it requires geometric path planning which has been shown to be PSPACE hard, complex representational issues for robots with known physical, geometric and temporal constraints, and challenging mapping/representing requirements for the workspace environment. Many important environments, e.g., houses, factories and airports, are heterogeneous, i.e., contain free, cluttered and narrow spaces. Heterogeneous environments, however, introduce a new set of problems for motion planning and PRM strategies because there is no ideal method suitable for all regions in the environment. In this work we introduce a technique that can adapt and apply PRM methods suitable for local regions in an environment. The basic strategy is to first identify a local region of the environment suitable for the current action based on identified neighbors. Next, based on past performance of methods in this region, adapt and pick a method to use at this time. This selection and adaptation is done by applying machine learning. By performing the local region creation in this dynamic fashion, we remove the need to explicitly partition the environment as was done in previous methods and which is difficult to do, slows down performance and includes the difficult process of determining what strategy to use even after making an explicit partitioning. Our method handles and removes these overheads. We show benefits of this approach in both planning robot motions and in protein folding simulations. We perform experiments on robots in simulation with different degrees of freedom and varying levels of heterogeneity in the environment and show an improvement in performance when our local learning method is applied. Protein folding simulations were performed on 23 proteins and we note an improvement in the quality of pathways produced with comparable performance in terms of time needed to build the roadmap.


Adaptive Local Learning in Sampling Based Motion Planning for Protein Folding, Chinwe Ekenna and Shawna Thomas and Nancy M. Amato, BMC Syst Biol, Special Issue from the 2015 IEEE International Conference on Bioinformatics and Biomedicine (BIBM), Vol: 10, Issue: 49, pp. 165-179, Aug 2016. DOI: 10.1186/s12918-016-0297-9
Keywords: Computational Biology, Protein Folding
Links : [Published]

BibTex

@article{ekenna-bmcsb-2016
, author = "Chinwe Ekenna and Shawna Thomas and Nancy M. Amato"
, title = "Adaptive Local Learning in Sampling Based Motion Planning for Protein Folding"
, journal = "BMC Syst Biol, Special Issue from IEEE International Conference on Bioinformatics and Biomedicine (BIBM)"
, volume = "10"
, number = "49"
, pages = "165--179"
, year = "2016"
, month = "August"
, doi = "10.1186/s12918-016-0297-9"
}


Abstract

Background Simulating protein folding motions is an important problem in computational biology. Motion planning algorithms, such as Probabilistic Roadmap Methods, have been successful in modeling the folding landscape. Probabilistic Roadmap Methods and variants contain several phases (i.e., sampling, connection, and path extraction). Most of the time is spent in the connection phase and selecting which variant to employ is a difficult task. Global machine learning has been applied to the connection phase but is inefficient in situations with varying topology, such as those typical of folding landscapes. Results We develop a local learning algorithm that exploits the past performance of methods within the neighborhood of the current connection attempts as a basis for learning. It is sensitive not only to different types of landscapes but also to differing regions in the landscape itself, removing the need to explicitly partition the landscape. We perform experiments on 23 proteins of varying secondary structure makeup with 52–114 residues. We compare the success rate when using our methods and other methods. We demonstrate a clear need for learning (i.e., only learning methods were able to validate against all available experimental data) and show that local learning is superior to global learning producing, in many cases, significantly higher quality results than the other methods. Conclusions We present an algorithm that uses local learning to select appropriate connection methods in the context of roadmap construction for protein folding. Our method removes the burden of deciding which method to use, leverages the strengths of the individual input methods, and it is extendable to include other future connection methods.


The Impact of Approximate Methods on Local Learning in Motion Planning, Diane Uwacu, Chinwe Ekenna, Shawna Thomas, Nancy Amato, 1st International Workshop on Robot Learning and Planning (RLP 2016), in conjunction with RSS 2016, pp. 38-44, Ann Arbor, MI, Jun 2016.
Keywords: Machine Learning, Sampling-Based Motion Planning
Links : [ArXiv] [Manuscript]

BibTex

@inproceedings{uwacu-wrlp-2016
, author = "Diane Uwacu and Chinwe Ekenna and Shawna Thomas and Nancy M. Amato"
, title = "The Impact of Approximate Methods on Local Learning in Motion Planning"
, booktitle = "1st International Workshop on Robot Learning and Planning (RLP 2016), in conjunction with RSS 2016"
, month = "June"
, year = "2016"
, note = "http://chitsazlab.org/robotics/rlp2016/RLP_2016_paper_11.html"
}


Abstract

Machine learning methods have been applied to many motion planning algorithms including probabilistic roadmap methods (PRM). There are many variants of these methods and choosing the best one every time is hard and depends on local properties of the environment. A successful learning approach has been developed to offset this issue. This learning approach was applied to PRMs to help decide intelligently what method to utilize in dynamically created local regions of the environment or task space. It used exact neighbor finding approaches and removed the need to partition environments to get improved results. In this work we make further advances by introducing approximate neighbor finder methods. It has been established that approximate neighbor finding methods are faster than exact methods, still work well in connecting nodes to edges in PRMs, and that connection is robust to noise. We study what happens when noise is introduced into learning by using approximate methods instead of already studied exact methods. We show that the impact of noise on learning depends on how much learning needs to take place given the topology of the environment. Our results demonstrate a correlation between heterogeneity and the need for learning over a local region.


Improved Roadmap Connection via Local Learning for Sampling Based Planners, Chinwe Ekenna, Diane Uwacu, Shawna Thomas, Nancy Amato, Proc. IEEE/RSJ Int. Conf. Intel. Rob. Syst. (IROS), pp. 3227-3234, Hamburg, Germany, Oct 2015. DOI: 10.1109/IROS.2015.7353825
Keywords: Machine Learning, Motion Planning, Sampling-Based Motion Planning
Links : [Published]

BibTex

@INPROCEEDINGS{7353825, author={C. {Ekenna} and D. {Uwacu} and S. {Thomas} and N. M. {Amato}}, booktitle={2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)}, title={Improved roadmap connection via local learning for sampling based planners}, year={2015}, volume={}, number={}, pages={3227-3234},}


Abstract

Probabilistic Roadmap Methods (PRMs) solve the motion planing problem by constructing a roadmap (or graph) that models the motion space when feasible local motions exist. PRMs and variants contain several phases during roadmap generation i.e., sampling, connection, and query. Some work has been done to apply machine learning to the connection phase to decide which variant to employ, but it uses a global learning approach that is inefficient in heterogeneous situations. We present an algorithm that instead uses local learning: it only considers the performance history in the vicinity of the current connection attempt and uses this information to select good candidates for connection. It thus removes any need to explicitly partition the environment which is burdensome and typically difficult to do. Our results show that our method learns and adapts in heterogeneous environments, including a KUKA youBot with a fixed and mobile base. It finds solution paths faster for single and multi-query scenarios and builds roadmaps with better coverage and connectivity given a fixed amount of time in a wide variety of input problems. In all cases, our method outperforms the previous adaptive connection method and is comparable or better than the best individual method.


Studying Learning Techniques in Different Phases of PRM Construction, Chinwe Ekenna, Diane Uwacu, Shawna Thomas, Nancy Amato, In Machine Learning in Planning and Control of Robot Motion Workshop (IROS-MLPC), Hamburg, Germany, Oct 2015. DOI: 10.1109/IROS.2015.7353825
Keywords: Machine Learning, Sampling-Based Motion Planning
Links : [Published]

BibTex

no bib for now.


Abstract

Probabilistic Roadmap Methods (PRMs) solve the motion planning problem in two phases by sampling free configurations and connecting them together to build a map that is used to find a valid path. Existing algorithms are highly sensitive to the topology of the problem, and their efficiency depends on applying them to a compatible problem. Reinforcement learning has been applied to motion planning and rewards the action performed by planners during either sampling or connection, but not both. Previous work computed a global reward and action scheme, which saw a setback when heterogeneous environments were concerned. Local learning (connection) was recently introduced to offset this weakness identified during global learning, and there was some improvement in planner performance. These different learning schemes (global and local) have shown strengths and weaknesses individually. In this paper, we investigate local learning for sampling. We study what type of learning to apply when, and how the two phases of PRM roadmap construction interact, which has not been investigated before. We show the performance using each scheme on a KUKAyouBot, an 8 degree of freedom robot, and analyze what happens when they are all combined during roadmap construction


Adaptive Neighbor Connection using Node Characterization , Chinwe Ekenna , Shawna Thomas , Nancy M. Amato , N/A, N/A, Jan 2014.
Keywords: Machine Learning, Sampling-Based Motion Planning
Links : [Published]

BibTex

@MISC{Ekenna_adaptiveneighbor,
author = {Chinwe Ekenna and Shawna Thomas and Nancy M. Amato},
title = {Adaptive Neighbor Connection using Node Characterization},
year = {}
}


Abstract

Abstract. Sampling-based motion planning has been successful in plan-ning the motion for a wide variety of robot types. An important primitive of these methods involves connecting nodes by selecting candidate neigh-bors and checking the path between them. Recently, an approach called Adaptive Neighbor Connection (ANC) was proposed to automate neigh-bor selection using machine learning techniques. It adaptively selects a neighbor connection strategy from a candidate set of options and learns which strategy to use by examining their success rates and costs. In this work, we extend ANC’s reward function by characterizing the types of nodes added (including information about their connectivity) after each connection attempt. In doing so, we gain insight into the na-ture of these nodes and their ability to improve roadmap quality. We also refine ANC’s cost function by considering the computation time spent during each connection attempt so as to potentially learn faster and more efficient connectors. We show improved performance over selecting a sin-gle connection strategy and over ignoring node characterization during learning. We present results in a variety of 2D and 3D environments and are able to solve queries in half the time on average compared to the best single connection strategy and to the original ANC work. 1


Adaptive Neighbor Connection for PRMs: A Natural Fit for Heterogeneous Environments and Parallelism, Chinwe Ekenna, Sam Ade Jacobs, Shawna Thomas, Nancy M. Amato, In. Proc. IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Tokyo, Japan, Nov 2013. DOI: 10.1109/IROS.2013.6696510
Keywords: Parallel Algorithms, Parallel Planning, Sampling-Based Motion Planning
Links : [Published]

BibTex

@INPROCEEDINGS{6696510, author={C. {Ekenna} and S. A. {Jacobs} and S. {Thomas} and N. M. {Amato}}, booktitle={2013 IEEE/RSJ International Conference on Intelligent Robots and Systems}, title={Adaptive neighbor connection for PRMs: A natural fit for heterogeneous environments and parallelism}, year={2013}, volume={}, number={}, pages={1249-1256}, doi={10.1109/IROS.2013.6696510}}


Abstract

Probabilistic Roadmap Methods (PRMs) are widely used motion planning methods that sample robot configurations (nodes) and connect them to form a graph (roadmap) containing feasible trajectories. Many PRM variants propose different strategies for each of the steps and choosing among them is problem dependent. Planning in heterogeneous environments and/or on parallel machines necessitates dividing the problem into regions where these choices have to be made for each one. Hand-selecting the best method for each region becomes infeasible. In particular, there are many ways to select connection candidates, and choosing the appropriate strategy is input dependent. In this paper, we present a general connection framework that adaptively selects a neighbor finding strategy from a candidate set of options. Our framework learns which strategy to use by examining their success rates and costs. It frees the user of the burden of selecting the best strategy and allows the selection to change over time. We perform experiments on rigid bodies of varying geometry and articulated linkages up to 37 degrees of freedom. Our results show that strategy performance is indeed problem/region dependent, and our adaptive method harnesses their strengths. Over all problems studied, our method differs the least from manual selection of the best method, and if one were to manually select a single method across all problems, the performance can be quite poor. Our method is able to adapt to changing sampling density and learns different strategies for each region when the problem is partitioned for parallelism.


Adapting RRT Growth for Heterogeneous Environments, Jory Denny, Marco Morales, Samuel Rodriguez, Nancy M. Amato, In. Proc. IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Tokyo, Japan, Nov 2013. DOI: 10.1109/IROS.2013.6696589
Keywords: Adaptive Algorithm, Rapidly-exploring Random Tree (RRT), Sampling-Based Motion Planning
Links : [Published]

BibTex

@INPROCEEDINGS{6696589, author={J. {Denny} and M. {Morales} and S. {Rodriguez} and N. M. {Amato}}, booktitle={2013 IEEE/RSJ International Conference on Intelligent Robots and Systems}, title={Adapting RRT growth for heterogeneous environments}, year={2013}, volume={}, number={}, pages={1772-1778}, doi={10.1109/IROS.2013.6696589}}


Abstract

Rapidly-exploring Random Trees (RRTs) are effective for a wide range of applications ranging from kinodynamic planning to motion planning under uncertainty. However, RRTs are not as efficient when exploring heterogeneous environments and do not adapt to the space. For example, in difficult areas an expensive RRT growth method might be appropriate, while in open areas inexpensive growth methods should be chosen. In this paper, we present a novel algorithm, Adaptive RRT, that adapts RRT growth to the current exploration area using a two level growth selection mechanism. At the first level, we select groups of expansion methods according to the visibility of the node being expanded. Second, we use a cost-sensitive learning approach to select a sampler from the group of expansion methods chosen. Also, we propose a novel definition of visibility for RRT nodes which can be computed in an online manner and used by Adaptive RRT to select an appropriate expansion method. We present the algorithm and experimental analysis on a broad range of problems showing not only its adaptability, but efficiency gains achieved by adapting exploration methods appropriately.


Region Identification Methods for Efficient and Automated Motion Planning, Jory Denny, Anshul Agrawal, Evan Greco, Lydia Tapia, Nancy M. Amato, N/A, Sep 2010.
Keywords: Motion Planning
Links : [Published]

BibTex

@article{denny2010region,
title={Region Identification Methods for Efficient and Automated Motion Planning},
author={Denny, Jory and Agrawal, Anshul and Greco, Evan and Tapia, Lydia and Amato, Nancy M},
year={2010},
publisher={Citeseer}
}


Abstract

Realistic environments for motion planning problems typically consist of multiple areas, e.g., in a house there are rooms, hallways, and doorways. Decomposition of the environment into smaller areas, or regions, has been shown to impact the quality of planning for adaptive methods. Also other complex problems, such as planning for groups of agents with environmental preferences, can be aided with automated region identification. However, despite the advantages of regions, automatic region identification is not always easy, inexpensive, or consistent. In this paper we explore and compare three methods of automatic region identification and quantify the effects of the resulting regions on planning. The three strategies used for region identification are the statistical methods: k-means clustering, PG-means clustering, and Hierarchical clustering. First, we explore the differences in the regions produced by these three methods in a variety of rigid body and articulated linkage environments. Then, we quantitatively compare the usefulness of the region methods in automated motion planning through the application of the regions within the Unsupervised Adaptive Strategy for Motion Planning (UAS). Our results indicate both regions that seem intuitive and non-intuitive to the problems solve motion planning problems with increased efficiency and automation. That is, we found that planning generally benefitted from using regions, and the benefit was not tied to the naturalness of the region.


RESAMPL: A Region-Sensitive Adaptive Motion Planner, Samuel Rodriguez, Shawna Thomas, Roger Pearce, Nancy M. Amato, Algorithmic Foundation of Robotics VII , pp. 285-300, N/A, Jan 2008. DOI: 10.1007/978-3-540-68405-3_18
Keywords: Machine Learning, Sampling-Based Motion Planning
Links : [Published]

BibTex

@Inbook{Rodriguez2008,
author="Rodriguez, Samuel
and Thomas, Shawna
and Pearce, Roger
and Amato, Nancy M.",
editor="Akella, Srinivas
and Amato, Nancy M.
and Huang, Wesley H.
and Mishra, Bud",
title="RESAMPL: A Region-Sensitive Adaptive Motion Planner",
bookTitle="Algorithmic Foundation of Robotics VII: Selected Contributions of the Seventh International Workshop on the Algorithmic Foundations of Robotics",
year="2008",
publisher="Springer Berlin Heidelberg",
address="Berlin, Heidelberg",
pages="285--300",
isbn="978-3-540-68405-3",
doi="10.1007/978-3-540-68405-3_18",
url="https://doi.org/10.1007/978-3-540-68405-3_18"
}


Abstract

Automatic motion planning has applications ranging from traditional robotics to computer-aided design to computational biology and chemistry. While randomized planners, such as probabilistic roadmap methods (PRMs) or rapidly-exploring random trees (RRT), have been highly successful in solving many high degree of freedom problems, there are still many scenarios in which we need better methods, e.g., problems involving narrow passages or which contain multiple regions that are best suited to different planners. In this work, we present RESAMPL, a motion planning strategy that uses local region information to make intelligent decisions about how and where to sample, which samples to connect together, and to find paths through the environment. Briefly, RESAMPL classifies regions based on the entropy of the samples in it, and then uses these classifications to further refine the sampling. Regions are placed in a region graph that encodes relationships between regions, e.g., edges correspond to overlapping regions. The strategy for connecting samples is guided by the region graph, and can be exploited in both multi-query and single-query scenarios. Our experimental results comparing RESAMPL to previous multi-query and single-query methods show that RESAMPL is generally significantly faster and also usually requires fewer samples to solve the problem.


Incremental Map Generation (IMG), Dawen Xie, Marco Morales, Roger Pearce, Shawna Thomas, Jyh-Ming Lien, Nancy M. Amato, Algorithmic Foundation of Robotics VII, N/A, Jan 2008. DOI: 10.1007/978-3-540-68405-3_4
Keywords: Machine Learning, Sampling-Based Motion Planning
Links : [Published]

BibTex

@Inbook{Xie2008,
author="Xie, Dawen
and Morales, Marco
and Pearce, Roger
and Thomas, Shawna
and Lien, Jyh-Ming
and Amato, Nancy M.",
editor="Akella, Srinivas
and Amato, Nancy M.
and Huang, Wesley H.
and Mishra, Bud",
title="Incremental Map Generation (IMG)",
bookTitle="Algorithmic Foundation of Robotics VII: Selected Contributions of the Seventh International Workshop on the Algorithmic Foundations of Robotics",
year="2008",
publisher="Springer Berlin Heidelberg",
address="Berlin, Heidelberg",
pages="53--68",
isbn="978-3-540-68405-3",
doi="10.1007/978-3-540-68405-3_4",
url="https://doi.org/10.1007/978-3-540-68405-3_4"
}


Abstract

Probabilistic roadmap methods (prms) have been highly successful in solving many high degree of freedom motion planning problems arising in diverse application domains such as traditional robotics, computer-aided design, and computational biology and chemistry. One important practical issue with prms is that they do not provide an automated mechanism to determine how large a roadmap is needed for a given problem. Instead, users typically determine this by trial and error and as a consequence often construct larger roadmaps than are needed. In this paper, we propose a new prm-based framework called Incremental Map Generation (img) to address this problem. Our strategy is to break the map generation into several processes, each of which generates samples and connections, and to continue adding the next increment of samples and connections to the evolving roadmap until it stops improving. In particular, the process continues until a set of evaluation criteria determine that the planning strategy is no longer effective at improving the roadmap. We propose some general evaluation criteria and show how to apply them to construct different types of roadmaps, e.g., roadmaps that coarsely or more finely map the space. In addition, we show how img can be integrated with previously proposed adaptive strategies for selecting sampling methods. We provide results illustrating the power of img.


Analysis of the Evolution of C-Space Models Built through Incremental Exploration, Marco Morales, Roger Pearce, Nancy M. Amato, in Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), pp. 1029-1034, Rome, Italy, Apr 2007. DOI: 10.1109/ROBOT.2007.363120
Keywords: Mobile Robots, Motion Planning, Sampling-Based Motion Planning
Links : [Published]

BibTex

@INPROCEEDINGS{4209224,
author={Morales, Marco and Pearce, Roger and Amato, Nancy M.},
booktitle={Proceedings 2007 IEEE International Conference on Robotics and Automation},
title={Analysis of the Evolution of C-Space Models built through Incremental Exploration},
year={2007},
volume={},
number={},
pages={1029-1034},
doi={10.1109/ROBOT.2007.363120}}


Abstract

Many sampling methods for motion planning explore the robot's configuration space (C-space) starting from a set of configuration(s) and incrementally explore surrounding areas to produce a growing model of the space. Although there is a common understanding of the strengths and weaknesses of these techniques, metrics for analyzing the incremental exploration process and for evaluating the performance of incremental samplers have been lacking. We propose the use of local metrics that provide insight into the complexity of the different regions in the model and global metrics that describe the process as a whole. These metrics only require local information and can be efficiently computed. We illustrate the use of our proposed metrics to analyze representative incremental strategies including the rapidly-exploring random trees, expansive space trees, and the original randomized path planner. We show how these metrics model the efficiency of C-space exploration and help to identify different modeling stages. In addition, these metrics are ideal for adapting space exploration to improve performance.


Metrics for Analyzing the Evolution of C-Space Models, Marco A. Morales, Roger Pearce, Nancy M. Amato, in Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), pp. 1268-1273, Orlando, Florida, USA, May 2006. DOI: 10.1109/ROBOT.2006.1641883
Keywords: Algorithms, Motion Planning
Links : [Published]

BibTex

@INPROCEEDINGS{1641883,
author={Morales A, M.A. and Pearce, R. and Amato, N.M.},
booktitle={Proceedings 2006 IEEE International Conference on Robotics and Automation, 2006. ICRA 2006.},
title={Metrics for analyzing the evolution of C-space models},
year={2006},
volume={},
number={},
pages={1268-1273},
doi={10.1109/ROBOT.2006.1641883}}


Abstract

There are many sampling-based motion planning methods that model the connectivity of a robot's configuration space (C-space) with a graph whose nodes are valid configurations and whose edges represent valid transitions between nodes. One of the biggest challenges faced by users of these methods is selecting the right planner for their problem. While researchers have tried to compare different planners, most accepted metrics for comparing planners are based on efficiency, e.g., number of collision detection calls or samples needed to solve a particular set of queries, and there is still a lack of useful and efficient quantitative metrics that can be used to measure the suitability of a planner for solving a problem. That is, although there is great interest in determining which planners should be used in which situations, there are still many questions we cannot answer about the relative performance of different planning methods. In this paper we make some progress towards this goal. We propose a metric that can be applied to each new sample considered by a sampling-based planner to characterize how that sample improves, or not, the planner's current C-space model. This characterization requires only local information and can be computed quite efficiently, so that it can be applied to every sample. We show how this characterization can be used to analyze and compare how different planning strategies explore the configuration space. In particular, we show that it can be used to identify three phases that planners go through when building C-space models: quick learning (rapidly building a coarse model), model enhancement (refining the model), and learning decay (oversampling - most samples do not provide additional information). Hence, our work can also provide the basis for determining when a particular planning strategy has 'converged' on the best C-space model that it is capable of building.


C-Space Subdivision and Integration in Feature-Sensitive Motion Planning, Marco A. Morales A., Lydia Tapia, Roger Pearce, Samuel Rodriguez, Nancy M. Amato, In Proc. IEEE International Conference on Robotics and Automation (ICRA), pp. 3114-3119, Barcelona, Spain, Apr 2005. DOI: 10.1109/ROBOT.2005.1570589
Keywords: Machine Learning, Motion Planning, Sampling-Based Motion Planning
Links : [Published] [Manuscript]

BibTex

@INPROCEEDINGS{1570589,
author={M. A. {Morales A.} and L. {Tapia} and R. {Pearce} and S. {Rodriguez} and N. M. {Amato}},
booktitle={Proceedings of the 2005 IEEE International Conference on Robotics and Automation},
title={C-space Subdivision and Integration in Feature-Sensitive Motion Planning},
year={2005},
volume={},
number={},
pages={3114-3119},
doi={10.1109/ROBOT.2005.1570589}}


Abstract

There are many randomized motion planning techniques, but it is often difficult to determine what planning method to apply to best solve a problem. Planners have their own strengths and weaknesses, and each one is best suited to a specific type of problem. In previous work, we proposed a meta-planner that, through analysis of the problem features, subdivides the instance into regions and determines which planner to apply in each region. The results obtained with our prototype system were very promising even though it utilized simplistic strategies for all components. Even so, we did determine that strategies for problem subdivision and for combination of partial regional solutions have a crucial impact on performance. In this paper, we propose new methods for these steps to improve the performance of the meta-planner. For problem subdivision, we propose two new methods: a method based on ‘ gaps’ and a method based on information theory. For combining partial solutions, we propose two new methods that concentrate on neighboring areas of the regional solutions. We present results that show the performance gain achieved by utilizing these new strategies.


A Machine Learning Approach for Feature-Sensitive Motion Planning, Marco Morales, Lydia Tapia, Roger Pearce, Samuel Rodriguez, Nancy M. Amato, In Proc. Int. Wkshp. on Alg. Found. of Rob. (WAFR), pp. 361-376, Utrecht/Zeist, The Netherlands, Jul 2004. DOI: 10.1007/10991541_25
Keywords: Machine Learning, Sampling-Based Motion Planning
Links : [Published]

BibTex

@INPROCEEDINGS{10.1007/10991541_25,
author={Marco {Morales}, Lydia {Tapia}, Roger {Pearce}, Samuel {Rodriguez}, Nancy M. {Amato}},
booktitle={In Proc. Int. Wkshp. on Alg. Found. of Rob. (WAFR)},
title={A Machine Learning Approach for Feature-Sensitive Motion Planning},
year={2004},
volume={}, number={}, pages={361--376},
doi={10.1007/10991541_25}
}


Abstract

Although there are many motion planning techniques, there is no method that outperforms all others for all problem instances. Rather, each technique has different strengths and weaknesses which makes it best-suited for certain types of problems. Moreover, since an environment can contain vastly different regions, there may not be a single planner that will perform well in all its regions. Ideally, one would use a suite of planners in concert and would solve the problem by applying the best-suited planner in each region. In this paper, we propose an automated framework for feature-sensitive motion planning. We use a machine learning approach to characterize and partition C-space into regions that are well suited to one of the methods in our library of roadmap-based motion planners. After the best-suited method is applied in each region, the resulting region roadmaps are combined to form a roadmap of the entire planning space. Over a range of problems, we demonstrate that our simple prototype system reliably outperforms any of the planners on their own.